This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Memorandum of Understanding on Plumbing Research

Mary Ann Dickinson and Pete DeMarco 2009 WaterSmart Innovations Conference Las Vegas, NV

Mary Ann Dickinson Executive Director Alliance for Water Efficiency Ph: 773.360.5100 E-mail: maryann@a4we.org

Pete DeMarco Director of Special Programs, the IAPMO Group Ph: 732.329.1237 E-mail: pete.demarco@iapmo.org

The Need for Research

- The Good News: New water efficient technologies are being developed
 - Demand generated by: utility rebate programs, green building rating systems, green consumerism
- The Not-So-Good News: In some areas we lack data to ensure continued:
 - Health and Safety
 - Systemic Efficacy
 - Code Compliance
- January, 2008: IAPMO and AWE agree to foster development of a Plumbing Research Coalition

Why is a Coalition a Good Idea?

- Alignment of efforts among a number of organizations
- While some good work has been accomplished, the aligning of industry sectors will yield:
 - Development of superior research proposals through more diverse interest involvement
 - Transparent research processes
 - *More accurate results*
 - Universal acceptance of results
 - Faster inclusion into plumbing codes
 - Quicker, successful market transitions

Memorandum of Understanding

- February December, 2008: PMI, PHCC and the ICC contacted
 - All express interest in joining
 - MOU developed and ultimately accepted
- January, 2009: MoU signed at EPA Headquarters Administrator Stephen Johnson presiding

Plumbing Efficiency Research Coalition

Memorandum of Understanding

- Establishes framework for PERC as "a mechanism for voluntary cooperation on plumbing-related research projects that pertain to water efficiency" between the premier associations in the plumbing and water efficiency industries
- Non-binding and non-exclusive
- Research Projects will have separate specific agreements

Memorandum of Understanding

- Details the management of PERC research programs:
 - Obtaining funding Grant applications, AWE leads
 - Establishment of technical committees and project coordinators
 - Establishes technical requirements for test labs, universities and other potential partners
 - Sharing of data
 - Apportionment of costs
 - *Requires interaction with pertinent consensus standards developing organizations*

MoU - Potential Projects

1. Drainline Carry Research

- Commercial Installations
- Residential Installations

2. Water Re-use Systems and Safe Applications for Re-use Water

- Gray Water Systems
- Rain Water Harvesting Systems
- 3. Non-water Consuming Urinals
 - Evaluation of Field Installations
 - Accurate Cost-Benefit Analysis
 - Accumulation of Urine Salts
 - Improvements in Installation Practices to Minimize Buildup
- 4. Sizing of Water Efficient Plumbing Systems
 - Residential and Commercial
 - Engineering Solutions efficiency, flow velocity, water hammer

The First Research Project

- In March, 2009 PERC agrees to make drainline carry the first project because of increasing concern about the potential effects of reduced water flows
- Press release issued, May 2009 announcing the project
- Why was Drainline Carry chosen to be the first PERC project?

PERC Drainline Project

- Transition from 3.5 gpf toilets to 1.6 gpf never fully researched in commercial applications
- HET's remove another 20% from flush discharge volumes
- HE Urinals @ 0.5 gpf Zero gpf and Commercial faucet flow rates @ 0.5 gpm will no longer assist in transport of solids
- New efficient technologies in medical, food service and other commercial / institutional applications
- In residential applications, faucet and showerhead flow rates being reduced

PERC Drainline Carry Project

- Discharges from clothes washers and dishwashers being reduced
- Advent of gray water systems in residential applications
- CA and TX already have passed legislation to move to HET's/HEU's
- Problems emerging in Australia
- Where's the tipping point?

PERC Drainline Carry Project

- Technical committee formed: John Koeller (AWE), Shawn Martin (PMI), Lawrence Snow (PHCC), Bernie Soesilo (ICC), Pete DeMarco (IAPMO – Project Coordinator)
- May, 2009 Scope of Work determined and agree upon
- Unique approach: Three interacting elements of research

Project Components

- 1. Computer modeling Use of Computational Fluid Dynamics (CFD) or other modeling software to predict solids interactions in waste lines
- 2. Laboratory testing Conduct drainline carry experiments in a large drainline test apparatus in a lab setting
- **3. Field testing** Video record actual building drains employing EPAct level plumbing fixtures, retrofit with High Efficiency Fixtures and monitor systems for changes

Predictive Computer Modeling

Element Leader: Shawn Martin, PMI

Objectives:

- Develop or refine an existing predictive model of drainline transport under cumulative loading for commercial applications.
- Assess and validate the model relative to the results of the laboratory and field elements of this study.

• Work Plan:

- Literature search
- Identify universities partner
- Evaluate existing computer
- Select the most appropriate predictive tool or combination of tools
- Evaluate the predictive model against field and laboratory data
- Refine and tune the model as required
- Assess range of applicability and uses

Deliverables:

- Model Assessment Report and Recommended Model Design
- Predictive Model and Evaluation Results

Laboratory Testing

Element Leader - John Koeller, AWE

Objectives:

- Supplement computer modeling element
- Determination of minimum transport distances achieved by high efficiency toilets

• Work Plan:

- Literature search
- Determine laboratory partner

- Drainline diameters: 3-, 4- and 6-inch, Drainline slopes: 0%, 1%, 1.5% and 2%, material types: Cast iron and PVC
- Media types: Uncased soy bean paste, toilet paper, seat covers, paper towels, hygiene products
- Drainline geometry: straights, 90 degree elbows, 45 degree elbows, Y's, dips and sags; quantities and distances (150ft, 175ft, or 200ft)
- Flush volumes: 3L, 3.8L, 4.8L, and 6L (0.8gal, 1.0gal, 1.28gal, 1.6gal)

Deliverables:

- Review data to verify or revise predictive computer modeling results
- Provide recommendations to aid design professionals that maximize drainline transport in sanitary waste systems, and conversely, recommendations on what to avoid.

Field Testing

Element Leader: Ike Casey, PHCC

Objective:

 Visual evaluation of actual sanitary waste systems to determine systemic effect of High Efficiency fixtures

• Work Plan:

- Identification of plumbing systems for evaluation
 - Use patterns and geometry are appropriate for study (long horizontal runs to sewer)
 - Isolated WC's

- Consider partnering with US Military organizations (such as NAVFAC, Army Corps of Engineers) if possible
- Consider partnering with construction / maintenance / service organizations such as Roto Rooter

Deliverables:

- Review data to verify or revise predictive computer modeling results and laboratory results
- Design recommendations towards maximized drainline transport in sanitary waste systems, and conversely, recommendations on what to avoid.

Status (September, 2009)

Predictive Modeling and Laboratory Elements:

- Request for Qualification documents (RFQ's) have been developed and have been sent to qualified independent test laboratories and universities
- Feedback from the RFQ's will help determine cost
- Majority of cost will be associated with the laboratory tier due to the extremely large apparatus footprint
- Labs must conform to ISO requirements
- Several universities that specialize in multi-phase flow simulation and / or free surface CFD applications have been identified

Status (September, 2009)

Field Study Element

- NAVFAC July 2009 Port Hueneme visit
- Partnering with military will:
 - provide easy access to numerous candidate plumbing systems
 - greatly curtailing costs associated with the field study tier
- Discussions are ongoing
- For Detailed Information
 - Visit <u>www.plumbingefficiencyresearchcoalition.org</u>

The Need...

Funding

- PERC is searching for funding this project
- Cost estimates range between \$1M and \$2M, subject to feedback from the RFQ's and project partners
- Majority of cost is associated with the laboratory study element due to cost of constructing and housing the large test apparatus and the long duration of testing (6 to 9 months)
- Questions?

THANK YOU!

www.plumbingefficiencyresearchcoalition.org