This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Climatologically-based Irrigation Controller Bench Testing in Florida

Stacia L. Davis, ME EIT and Michael D. Dukes, PhD PE Agricultural and Biological Engineering Department

Introduction

Why is irrigation research important in Florida?

- Most homes in Florida have automatic irrigation systems
 - Most of these homeowners have no idea how to program their timers
 - When everyone over-irrigates, there's a potential for water shortages
 - Spring 2009 City of Tampa banned all automatic irrigation

What is an ET controller?

It is an irrigation controller that applies a depth of water based on an amount determined from weather data and other conditions specific to the landscape.

These conditions could include:

- soil type
- plant type
- sprinkler type
- sun and shade
 - slope

What is Evapotranspiration (ET)?

It is a combination of evaporation from the soil surface and transpiration from plant surface area. It is considered the plant water requirement.

Introduction

Three types of ET Controllers

• Historically-Based

ET is derived from historical ET values collected over a large time period

• Stand-Alone

ET is calculated from on-site weather data by the controller

• Signal-Based

ET is calculated from a local weather station and sent by signal to the controller

Introduction

Objectives

- Evaluate the ability of three brands of climatologically-based controllers to schedule irrigation for a virtual landscape compared to a simulated soil water balance model, and
- Determine the variability in irrigation scheduling by ET controllers of the same brand.

Treatments

Toro Intelli-sense

h

ETwater Smart Controller 100

UF FLORID

Weathermatic SL1600 and SLW10

© University of Florida

Test Setup

September 9, 2007 through April 18, 2009

84 weeks

588 days

SWB

Saturation Field Capacity

Maximum Allowable Depletion

Permanent Wilting

© University of Florida

ET_{C}

Saturation Field Capacity

Maximum Allowable Depletion

Permanent Wilting

Point

RZWWS

0

ET_{C}

Saturation **Field Capacity**

Maximum Allowable Depletion

Permanent Wilting

RZWWS

0

ET_{C}

Saturation Field Capacity

Maximum Allowable Depletion

Permanent Wilting

Point

0

 ET_{C}

Saturation Field Capacity

Maximum Allowable Depletion

Permanent Wilting

Point

Surface Accumulation Direct Runoff RZWWS

0

© University of

Measurement of Performance

© University of Florida

Program Settings

Description	Model	Weathermatic	Toro	ToroETwaterSandSand1010uppy All DaySuppy All Day	
Soil	Sand	Sand	Sand	Sand	
Slope (%)	10	10°	10	10	
Exposure	Full Sun	NA	Sunny All Day	Sunny All Day	
Readily Available Water (mm)	0.55	NA	NA	NA	
Maximum Allowable Depletion (%)	40	NA	50	50	
Vegetation	Bermuda	Custom	Warm Season Grass	Warm Season Grass	
Root Depth (in)	8.1	NA	6	6	
Landscape Coefficient	Varies Monthly	Varies Monthly	Varies Monthly	Unknown	
Precipitation Rate (in/hr)	1.60	1.60	1.60	1.60	
Application Efficiency (%)	60	NA	60	60	
Adjustments (%)	NA	165%	0	0	

UF FLORIDA

Weather - ET

University of Florida

Weather - Rainfall

Toro Replications

ETwater Replications

Weathermatic Replications

SWB Summary

	Parameter	Toro B	Weather- matic B	ETwater B	Model
Total Rainfall (in) Effective Rainfall (in) Net Irrigation (in) Gross Irrigation (in)		62.1	62.1	62.1	62.1
		21.9	19.9	20.6	21.2
		30.9	32.6	32.9	29.2
		51.5	54.3	54.8	48.7
	Deficit (in)	1.2	1.6	0.80	0
Surplus (in) Direct Runoff (in)		3.3	3.6	3.6	0
		0.08	0	0	0
	Soak Runoff (in)	0	0	0	0
Scheduling Losses (in)		3.4	3.6	3.6	0
	Irrigation Adequacy (%)	98	97	98	100
Schedule Efficiency (%)		89	89	89	100
Rainfall Efficiency (%) Overall Efficiency (%)		44	40	42	43
		52	52	53	60

Rolling Results

Frequencies of Results

© University of Florida

Conclusions

- There were no differences in controller replications
- Controller brands performed similarly to each other
- Irrigation adequacy and scheduling efficiency results ranged from high to low depending on time period chosen
 - Rainfall impacted the scheduling efficiency results
- Controllers irrigated many small irrigation events

Conclusions

- 2006-2007 ET controller irrigation study (Davis et al., 2009)
 - Controllers had 43% water savings compared to a UF-IFAS recommended time-based treatment
 - No change in turfgrass quality between treatments

Thank you!

Questions or Comments?

