This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

ET versus ETo Why Water Budgets are Wasting Water

Chris Brown

Various Drivers for Plant ET

- Actual ET depends upon plant species and variety, life cycle, nutrients, available water, soil type, and weather/climate
- Transpiration
 - photosynthesis, stem & leaf turgor and plant cooling
- Controlling mechanisms are various including stomata, hormones, leaf physiology, photosynthetic pathway

Actual Evapotranspiration: ETa

- Actual Evapotransipiration = precipitation + irrigation change in storage – runoff – interflow – percolation below root zone
- If storage term reduces, ETa is greater than Precipitation + Irrigation (plant is using water stored in soil)

The Climate Factor

Reference evapotranspiration = ETo ETo is a standard measurement which estimates the evapotranspiration of:

- Large field of 4" 7" tall, cool-season grass that is well watered in full sun
- Expressed as a rate, amount of water loss over a given time, usually inches/day
- Estimated by the CIMIS system as well as other methods

Sacramento Eto 2007-08, in./mo.

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

Reference Evapotranspiration: ETo

- Rn net radiation at the crop surface
- G soil heat flux density
- T mean daily air temperature at 2 m height
- u2 wind speed at 2 m height
- es saturation vapor pressure
- ea actual vapor pressure
- es ea saturation vapor pressure deficit
- D slope vapour pressure curve
- g psychrometric constant

FAO

"In the absence of any supply of water to the soil surface, evaporation decreases rapidly and may cease almost completely within a few days."

Relating ETa to ETo

- ETo = Reference Evapotranspiration
- ETa ~ Kc * ETo
- Water Budget = Kc * ETo/IE
 - Where IE equals Irrigation Efficiency

Crop ET versus Reference ET

Deficit Irrigation in Turf

- Providing less irrigation water than the plant used the week before (ETa)
- Plants use water from soil storage
 - ...stomatal conductance declines
 - ...ETa declines
- until soil water storage declines to point that plant stress is evident
- Las Vegas, Nevada

Calculating Irrigation Amounts

- ETa = I ∆S D
 ETa: actual evapotranspiration
 - I: irrigation (I)
 - ∆S: change in storage
 - D: drainage
- Following week: I = ETa/(1-LF)
 - LF: leaching fraction
- $I/ETo = 1.04 + 1.03 LF, r^2 = 96.4$

FIGURE 12. Daily Irrigation Color by N by LF by Time

Figure 13.Twice Weekly Irrigation Color by N by LF by Time - .40 L.F. 1<mark>4</mark> - .25 L.F. $1\overset{4}{0}$ Color Rating -.15 L.F. 1<mark>4</mark> 0 L.F. $1\overset{4}{0}$ 0 KG HA⁻¹ 1.2 KG HA⁻¹ 2.4 KG HA⁻¹ .15 L.F. Time (Julian Days)

Irrigation by Leaching Fraction

Water Savings – Las Vegas

- Twice weekly watering provides water savings:
 - 10, 5.8 and 11.9% at 0, -0.15 and -0.25LF
- And acceptable turf quality:
 - 8+ Color & 100% Cover
- Soil Water Storage at .52 was a threshold for appearance in deficit treatments
- Tradeoffs may lead to greater water savings without loss of turf – up to 47% at –0.40LF

Problems with Water Budgets

- Actual water demand versus ETo
 - Failure to use Kc in calculation
 - Turf quality versus yield
 - Irrigation system uniformity assumptions
 - Impact of urban landscapes, especially shade
- Value of water based upon end use
 - Landscape versus human consumption
 - Family size justice issues

Appropriate Terms

- ETa
 - Deficit
 - Plant water needs
 - Irrigation adequacy

- ETo
 - Reference
 - Theoretical

Climate Change

- Lower overall precipitation in many areas
- Longer and more frequent droughts
- Un-managed or environmental flora and fauna will adapt, flee or perish
- What will happen to the irrigated landscape as water shortages become more prevalent?

Key Questions

- How do we develop more accurate estimates of water demand – necessary and essential, versus current theory?
- Can technology offer solutions, or do the hose draggers already have the answer?
- Where is equity if customers with larger landscapes receive water at lower prices than customers with larger families?