This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Dry Ice: Water Conservation Practices in Cooling Water Systems

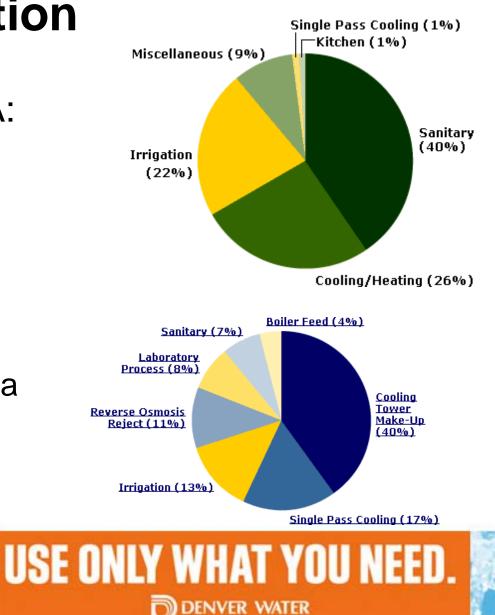
Presented by

Jason Millheim, EIT, LEED[®] AP Industrial Water Conservation Engineer Denver Water

USE ONLY What you NEED.

> DENVER WATER denverwater.org

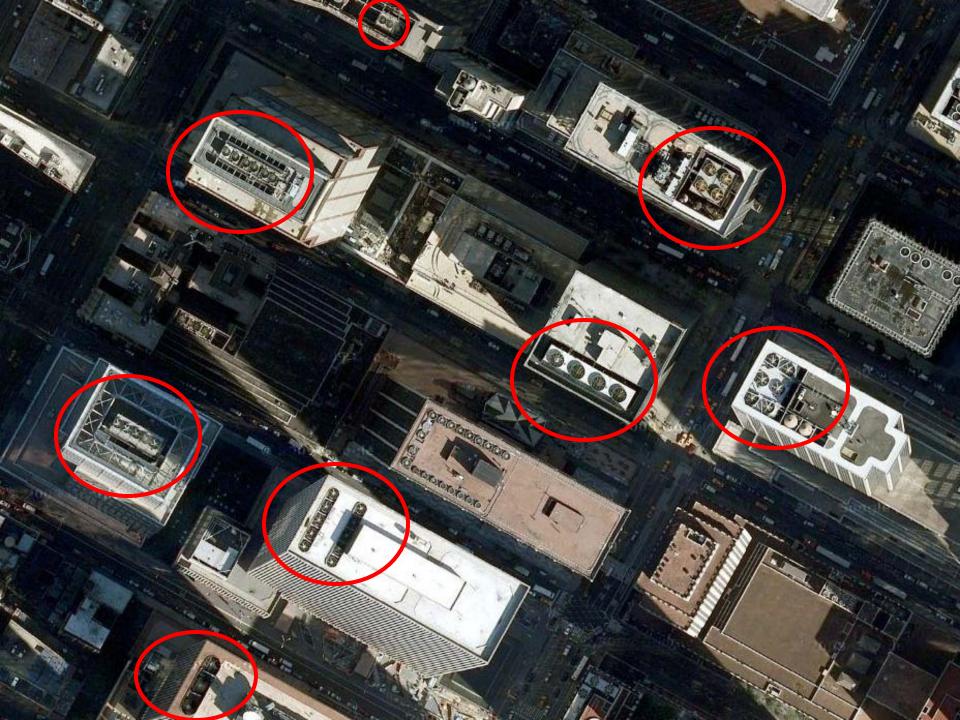
Why do we care?

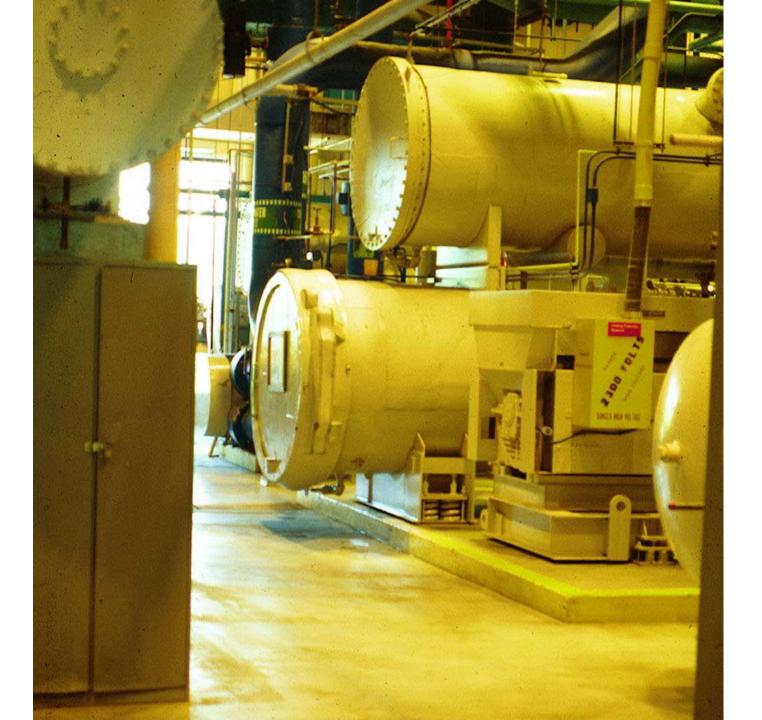

- Save potable water for expanding population
- Reduce water costs
- Reduce water pumping costs (energy)
- Reduce water treatment costs
- Reduce wastewater discharge & costs
- Reduce operating costs
- Save money—lots of money & water
- Water is our most precious resource, and irreplaceable.

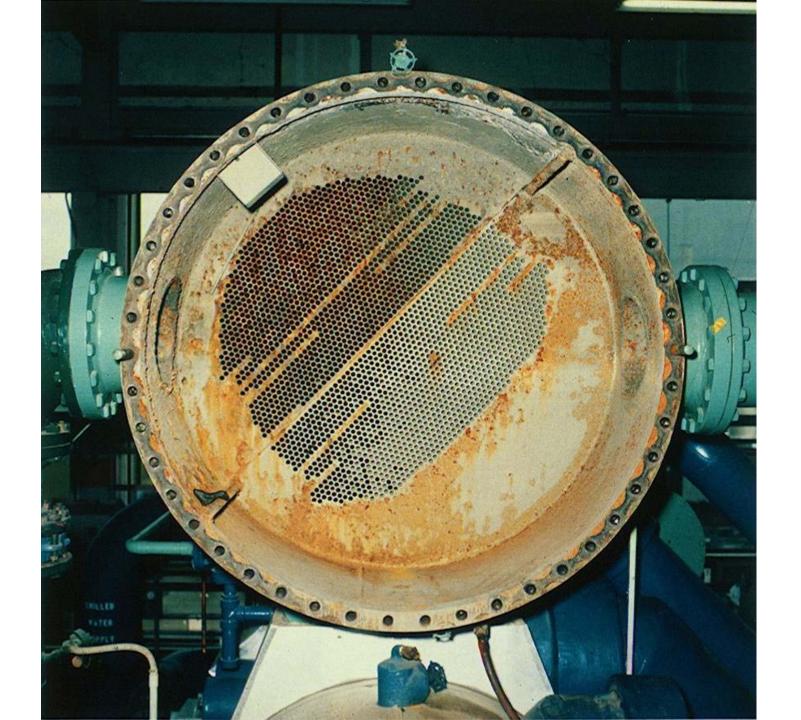
Water Consumption

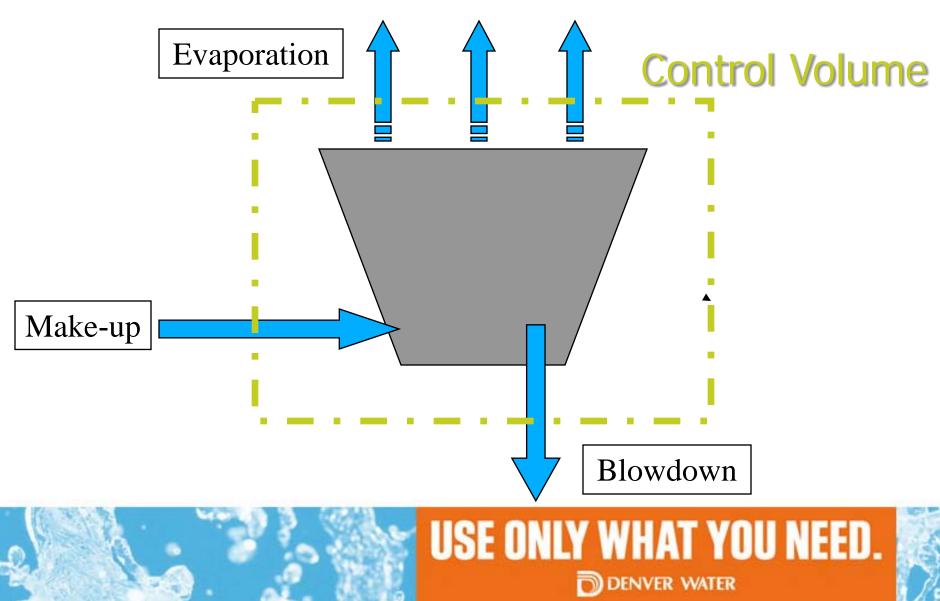
- According to the EPA:
 - Cooling systems account for 26% of total water use in a typical office building
 - 40% of total usage in a typical laboratory.

Cooling Towers


- A cooling tower is a heat rejection device, which extracts waste heat to the atmosphere though the cooling of a water stream to a lower temperature.
- Generally the largest single use of water in a facility without irrigation.







Thermodynamics of Cooling Towers

Thermodynamics of Cooling Towers

Mass balance

Cycles of Concentration

M = B + E

 $C = \frac{TDS_{tower}}{TDS_{makeup}} = \frac{M}{B}$

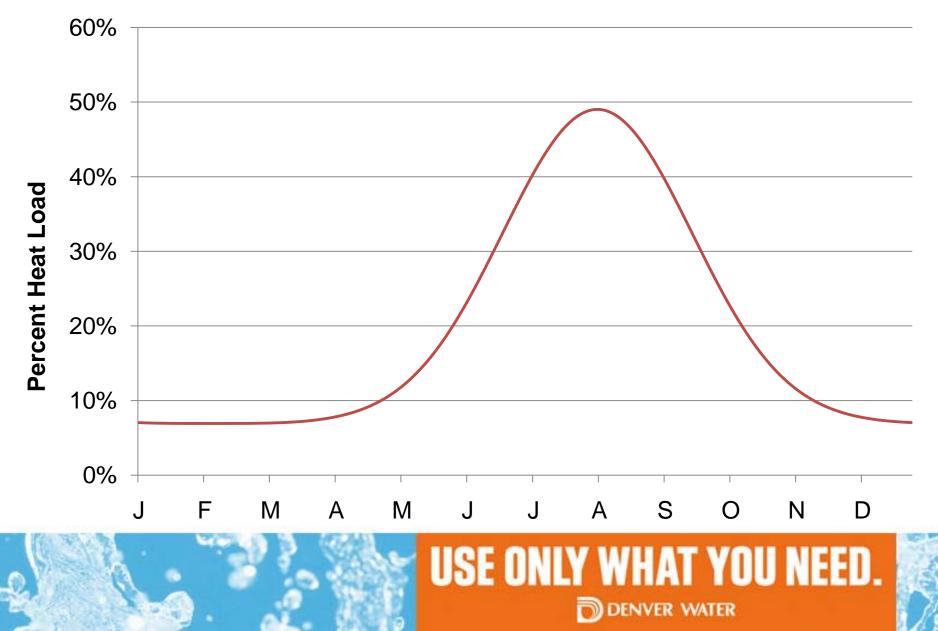
Blowdown

$$B = \frac{E}{C - 1}$$

Thermodynamics of Cooling Towers

Evaporation

$$E = \frac{C_P}{H_V} L \cdot R \qquad \qquad Q = \rho (C_P L R) \div 15,000 \frac{Btu/hr}{ton}$$


$$E = \frac{1 \frac{Btu}{lb^{\circ}F}}{971.3 \frac{Btu}{lb}} L \cdot R \qquad E = 1.8 \cdot Q \cdot \left(\frac{hr}{day}\right) \cdot \% \text{ load}$$

• Note: 1 refrigeration ton = 12,000 Btu/hr, 1 cooling tower ton = 15,000 Btu/hr

USE ONLY WHAT YOU NEED.

DENVER WATER

Evaporation & Heat Load

Cooling Tower System Requirements

- Protect all equipment to operate efficiently
- Minimize corrosion
- Prevent scale/fouling deposits
- Minimize microbio caused deposits
- Prevent pathogen growth

CORROSION

Water Treatment Programs

- Traditional chemical treatment
- Green chemical treatment
- Physical water treatment

Traditional chemicals

- Corrosion inhibitors
 - Polysilicates, phosphonates, azoles, etc.
- Scale inhibitors
 - Phosphonates, polymers
- Fouling control
 - Filtration, dispersant & fluidizer polymer chemicals
- Microbio control
 - Chlorine, bromine, ClO₂, ozone, H₂O₂

Traditional chemicals

Water Conservation

- Increase cycles of concentration
 - Quickest method of water conservation
 - No downtime
 - Consult a chemical supplier

$$V_{saved} = M_{old} \frac{C_{new} - C_{old}}{C_{old} (C_{new} - 1)}$$

DENVER WATER

Water Conservation

	New Cycles of Concentration													
		2	2.5	3	3.5	4	5	6	7	8	9	10	15	25
	1.5	33%	44%	50%	53%	56%	58%	60%	61%	62%	63%	63%	64%	65%
	2		17%	25%	30%	33%	38%	40%	42%	43%	44%	44%	46%	48%
	2.5			10%	16%	20%	25%	28%	30%	31%	33%	33%	36%	38%
OId	3				7%	11%	17%	20%	22%	24%	25%	26%	29%	31%
Old Cycles of Concentration	3.5					5%	11%	14%	17%	18%	20%	21%	23%	26%
of Con	4						6%	10%	13%	14%	16%	17%	20%	22%
ncentra	5							4%	7%	9%	10%	11%	14%	17%
tion	6								3%	5%	6%	7%	11%	13%
	7									2%	4%	5%	8%	11%
	8										2%	3%	6%	9%
	9											1%	5%	7%

Example—800 Ton HVAC Tower

Assume: average 25% heat load, 24 hour/day, 365 day/year

Cycles	Makeup water	Blowdown water
--------	--------------	----------------

5	15 gpm	3 gpm
U	10,800 gpd	2,160 gpd
	3,942,000 gpy	788,400 gpy

•	13.75 gpm	1.75 gpm
8	9,874 gpd	1,234 gpd
	3,604,000 gpy	450,514 gpy

	1.25 gpm	1.25 gpm
Savings	926 gpd	926 gpd
J	338,000 gpy	338,000gpy

\$1,000/year @ \$2.96/1000 gal

\$659/year @ \$1.95/1000 gal

Total Savings: \$1,659/year + chemical costs

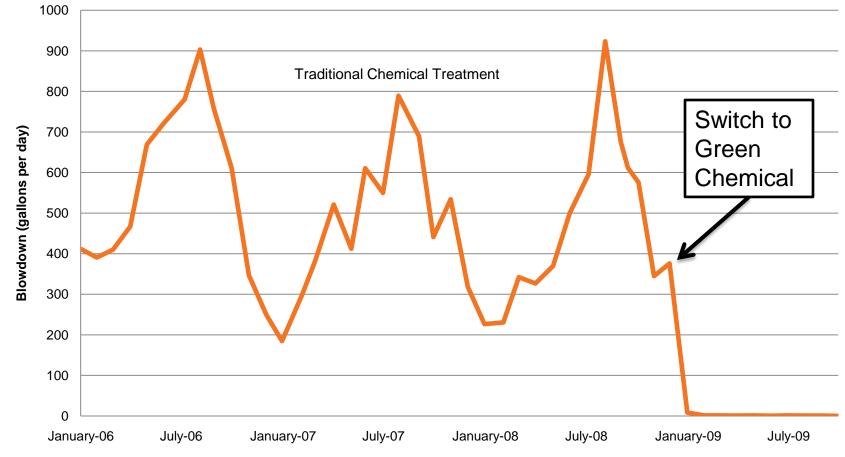
Green Chemical Treatment

- High-bonding crystal modifiers
- Originally developed for lead poisoning
- Typically biodegradable & biorenewable

USE ONLY WHA

- Reduce blowdown by 90%
- Zero-blowdown possible

Example—800 Ton HVAC Tower


Assume: average 25% heat load, 24 hour/day, 365 day/year

Cycles	Makeup water	Blowdown water
5	15 gpm 10,800 gpd 3,942,000 gpy	3 gpm 2,160 gpd 788,400 gpy
40	12.3 gpm 8,860 gpd 3,234,500 gpy	0.3 gpm 220 gpd 80,900 gpy
Savings	2.7 gpm 1,940 gpd 707,500 gpy	2.7 gpm 1,940 gpd 707,500gpy
	\$2,094/year @ \$2.96/1000 gal	\$1,380/year @ \$1.95/1000 gal

Total Savings: \$3,474/year + chemical costs

Green Chemical Treatment

Blowdown Consumption

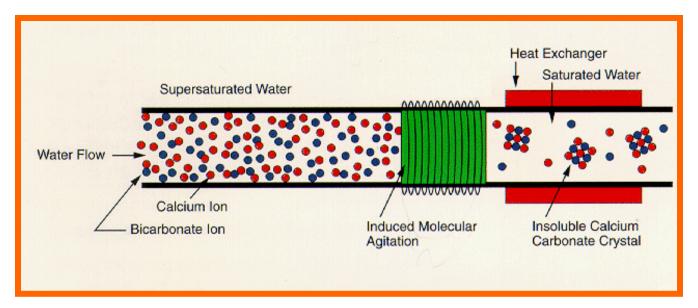
• One 330-ton tower, two chillers and plate & frame heat exchanger

• Approximately 250,000 gallons per year savings

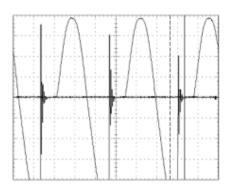
USE ONLY WHAT YOU NEED

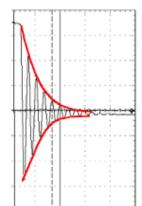
DENVER WATER

Physical Water Treatment


- A non-chemical method of water treatment for the purpose of scale prevention or mitigation
- Typically electromagnetic solenoid coils

• Faraday's Law
$$\int E \cdot dS = -\frac{\partial}{\partial t} \int B \cdot dA$$


DENVER WATER



PWT Operation

 Pulsed low (60 Hz) & high (10-100 kHz) frequency EM fields

Source: Clearwater Systems

Non-Chemical Water Treatment

- Electrolysis produces a high potential for scaling
- Eliminates chemical handling
- Cathodic reaction:

USE ONLY WHAT YOU NEED

DENVER WATER

$2H_2O + 2e^- \rightarrow H_2 + 2OH^ Ca^{2+} + 2CO_3^{2-} + OH^- \leftrightarrow CaCO_3 + CO_2 + H_2O$

Recycled Water

- Viable alternative to domestic water
- Not always available in all areas—yet!
- Denver uses recycled water for irrigation of parks, golf courses, zoo, & power plant cooling towers!

Thank You for Your Time and Your Attention

Contact

Jason Millheim, EIT, LEED[®] AP Industrial Water Conservation Engineer 303-628-6067 Fax 303-628-6238 jason.millheim@denverwater.org

> Denver Water 1600 West 12th Avenue Denver, Colorado 80204 www.denverwater.org