This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Reducing Dry Weather Runoff in So. California

WaterSmart Innovations Conference 2009 Joseph M. Berg Water Use Efficiency Programs Manager Municipal Water District of Orange County

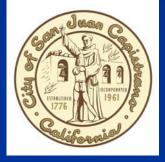
Agency Partners-Water Agencies

Santa Margarita Water District

South Coast Water District

Providing Quality Water and Wastewater Services to the Coastal Communities

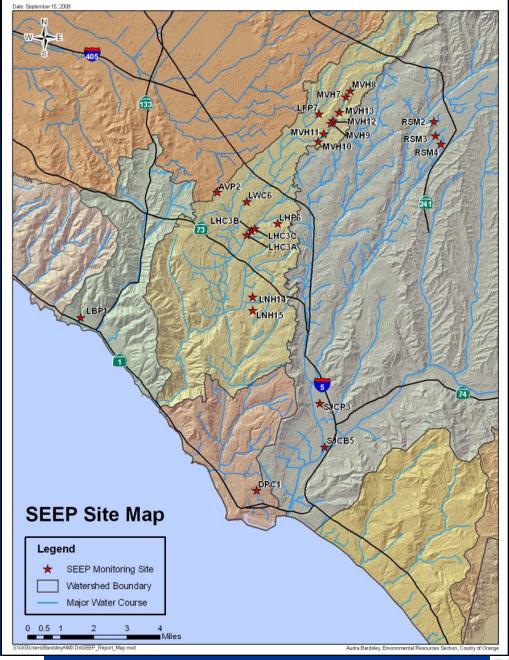
2


Agency Partners-Cities

Landscape Irrigation in Urban So. California

- 60-70% of water consumed
- Main source of dry-weather runoff to stormdrains
- Conveys pollutants to creeks and

ocean



Study Area

MWDOC SmarTimer Program History

2001 Westpark Study

Test installations at individual homes

2004 Residential Runoff Reduction (R3) Study Neighborhood-wide installations

2006-08

SEEP

3 BMP Groups 23 Drainage Areas 10 Cities

Key Landscape Retrofit BMP Tool #1: SmarTimers

Automatic landscape
 irrigation controllers

Adjusts irrigation schedule daily

New Questions under SEEP

Effectiveness of SmarTimers combined with other landscape retrofit BMPs?

Effectiveness across variable land uses & topography?

Is all dry-weather storm drain flow landscape irrigation?

Landscape Retrofit BMP #2: Distribution System

- Minimize overspray
 Reduces precipitation rate
- Improves uniformity of water distribution

Landscape Retrofit BMP #3: Edgescape

Buffer strip along pavement reduces runoff

Replace grass with low water plants
Modify sprinklers
Add mulch

Varied Assessment Areas 23 areas in 10 cities 14 Single-owner sites with large commercial controllers ("COM") Multi-family, Park, and Business land uses 9 single family neighborhood drainage areas with 1,000+ controllers ("SFR") BMP retrofit areas and un-retrofitted 'controls' Varied topography Acreade Randes

//drodger/drigee			
	Min	Max	Median
СОМ	1.9	91.5	5
SFR	13	56	30

Runoff Evaluation Program

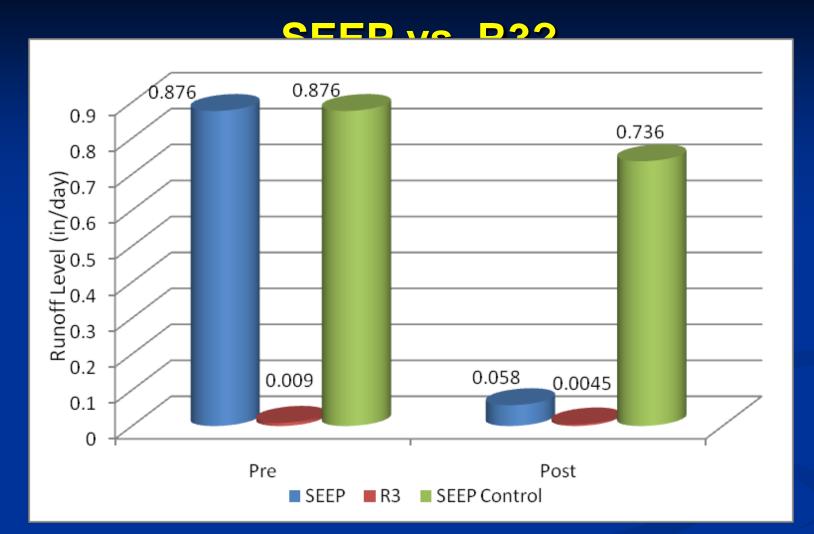
- Pre-project baseline (2007) compared to post-retrofit (2008)
- 14 weeks May August
- Twice weekly grab samples:
 - Fecal Indicator Bacteria (FIB)
 - Nitrogen and Phosphorus
 Dissolved Organic Carbon (DOC)
- Èlectrical Conductivity
 Continuous flow measurement

 Runoff flow reductions achieved?
 Challenging logistics
 Clogs, vandalism, consultant bankruptcy

	Zero Flow Sites	Flow Rate Range (cfs)
Pre-Retrofit	3	0-1.72
Post-Retrofit	4	0-0.13

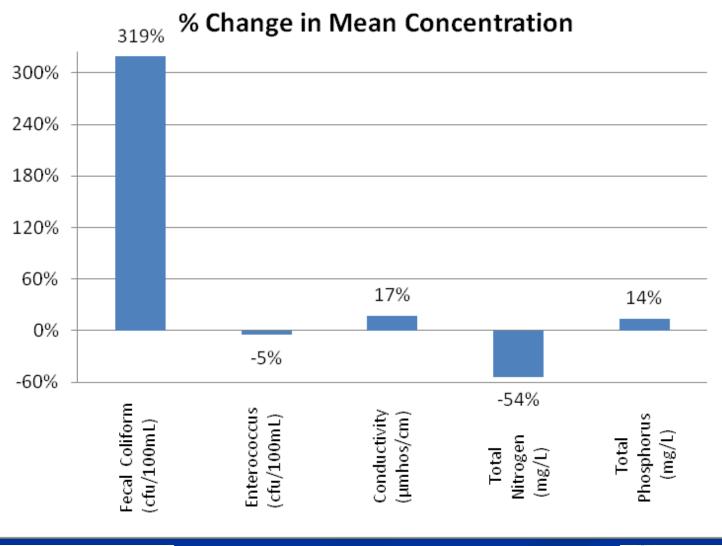
Daily volume down 55% at Controls
Daily volume down 90% at retrofitted areas

How did BMP groups and land uses compare?


- Too much diversity at too few sites to compare BMP Groups
- Average runoff rate from total land use area:

	Pre-Retrofit (in/day)	Change (in/day)
COM	0.02"	0.001"
SFR	0.3"	-0.2"

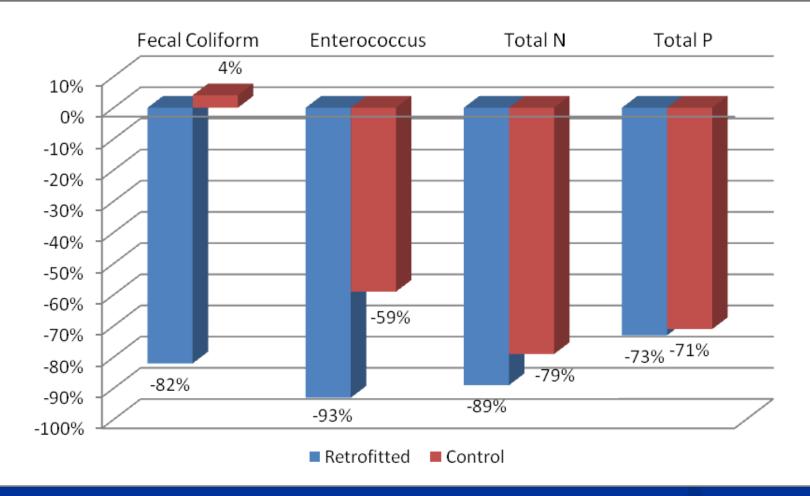
 5/6 SFR decreased; 50/50 COM
 SFR had a greater reduction despite lower BMP coverage %



Caused by topography, soil type, groundwater?

Runoff Quality Concentrations

WATER: DO MORE WITH LESS


Runoff Quality Concentrations

- All exceeded concentration-based Basin
 Plan Water Quality Objectives
- 3 out of 5 increased concentration when irrigation surface runoff decreased postretrofit
- N:P ratio shifted overall from 16:1 to 7:1 beneficial per WQO of 10:1

Loading Change Pre- to Post-Retrofit

 Overall: Fecal Coliform daily load decreased by about 35%, and Enterococcus load decreased by about 85%

Concentrations Increase and Runoff Decreases-Why?

- Fecal bacteria underground sources (biofilms, wildlife, rotting leaves) may be less diluted with less total flow
- Phosphorus occurs naturally in local soil & geologic structures
- Nitrogen decrease due to less wash-in of high-nitrogen fertilizers or reclaimed water from surface?

Implications

Implications for Concentration-based WQOs

- Elimination of surface irrigation runoff may not achieve compliance with concentration-based Water Quality Objectives or numeric effluent limits in MS4 discharge
- WQOs may need to be revisited re: local natural sources of constituents
- Implications for Load-based TMDLs
 - Irrigation runoff reduction is worthwhile for load reduction and water supply
 - Dry weather modeling and load allocations need to recognize underground infiltration into MS4

Next Steps

- Completion of SEEP water consumption data collection and statistical analyses
- Future Study
 - San Clemente SFR Project –Focus on intensified irrigation system retrofits in area draining to Poche "Bummer" Beach
 - Cost-effectiveness of irrigation system retrofits with respect to water consumption and runoff?
- Implication for Rebate Programs
 - Prioritize regionally-based on cost effectiveness?
 - Rebate nexus to Fix-it Tickets as cost control?

Acknowledgements

- SEEP Study Partners-City and Retail Water Agency staff
- A&N Technical Services, Inc.
- Sierra Analytical Labs, Inc.
- GEOtivity, Inc.
- County of Orange-OC Watersheds Program
- San Diego Regional Water Quality Control Board
- CA State Water Resources Control Board
- Funding Partners
 - People of the State of California
 - State Water Resources Control Board funded through the Proposition 40 Urban Stormwater Program
 - Agency Partners
 - Municipal Water District of Orange County
 - Metropolitan Water District of Southern California

Joe Berg Water Use Efficiency Programs Manager Municipal Water District of Orange County jberg@mwdoc.com

For a copy of this presentation visit: www.mwdoc.com

