This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

A Balanced Approach to Water Conservation: Removing Barriers and Maximizing Benefits

Sponsored by:

Water Research Foundation

Thomas Chesnutt, tom@antechserv.com A & N Technical Services, Inc.

Mr. Gary Fiske (Gary Fiske and Associates)

Mr. Eric Rothstein (Galardi Rothstein Group)

Dr. David Pekelney (A&N Technical Services)

Dr. Janice Beecher (Institute of Public Utilities, MSU)

Mr. David Mitchell (M.Cubed)

- Role of Conservation?
 - Short Term Drought Response
 - Long Term WUE Investment
- Short Term Financial Planning
 - Drought Response Tool Drought Pricing
- Long Term Resource Planning
- Conclusion

Confusion over Conservation

- "Conservation" can mean:
 - mandatory curtailment during water supply shortage,
 - any decrease in human water consumption, or
 - water that is stored for later consumption?
- "Conservation programs" can denote
 - a public relations campaign,
 - provision of efficient plumbing devices,
 - on-site water use surveys, or
 - retrofit on resale legislation or landscape ordinances?
- Conservation as Water Use Efficiency
 - Devices/practices whose benefits exceed costs

Role of Conservation

Short Term Drought Response

- In response to shortage, customers can reduce consumption (customer shortage cost is the avoided benefit of water use)
- Utility drought management--information programs, restrictions, drought pricing – is a planning problem!

Long Term WUE Investment

- Benefit Cost Analysis--What is the potential for WUE investment?
- Avoided Cost Analysis What is the benefit of WUE?
- Integrated Planning What should the portfolio of water resources look like?

Useful Planning Models

- Short Term Financial and Drought Planning
 - Rate Models Sales and Revenue
 - Drought Management Minimizing Shortage Costs
- Long Term Resource Planning
 - Avoided Cost Model Benefits of WUE
 - WUE Benefit Cost Model-Program Design and Tracking
 - Least Cost Planning
 - Balancing Supply Costs with Customer Shortage Costs
 - Relationship Between Avoided Costs and Shortage Costs
 - Analysis of Water Resource Portfolios

Short Term Planning

- Needs to address short-term Drought Contingency Planning
 - Conservation induced by Price
 - Conservation not induced by Price
- How much can/will customers reduce consumption during a shortage event?

Example: SDCWA Drought Response Tool

- ➤ An **empirical** planning tool for planning for Drought Response (consistent with Model Ordinance):
 - Model Drought Ordinance defines 4 Drought Stages
 - 4 Customer Demand Reduction Targets
 - Revenue Management and Rate Design are key
- ➤ Address **both** price-induced and non-price-induced water conservation.

What do we know about water conservation?

- Price-induced Customer Conservation
 - Lots
 - More than 125 studies of price's effect on water demand
 - Specific recommendations for residential water demand
 - Short-term vs. long-term responses
- Non-Price Induced Customer Conservation
 - It depends
 - It varies

Price-Induced Water Conservation

- Recommendation for short-term Price Elasticities:
 - Single Family Summer:

-.20

- Thus, a 100 percent increase in rates would result in a 20 percent decrease in summer water demand
- Single Family Non-Summer:

-.12

> Basis:

- Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies Renwick and Green, Journal of Environmental Economics and Management, 2000.
- Study empirically examines a recent drought
- Elasticity could be higher IF there is a strong media campaign

Non-Price-Induced Water Conservation

During drought, many things happen at once

- Drought pricing adjustments
- Public relations efforts that affect water use behaviors
- Public awareness
- Level of programmatic activity/enforcement by agencies
- Water use restrictions

During drought, there are limitations to customers' ability to cut back.

- Some water not "discretionary" (e.g., sanitary use)
- Some water exempt from restrictions (fire, erosion control)
- Some water used indoors (restrictions focus on outdoor use)

Savings Goals and Achievements

Table 3 Programs Adopted by Retail Water Suppliers during California Drought 1976-77

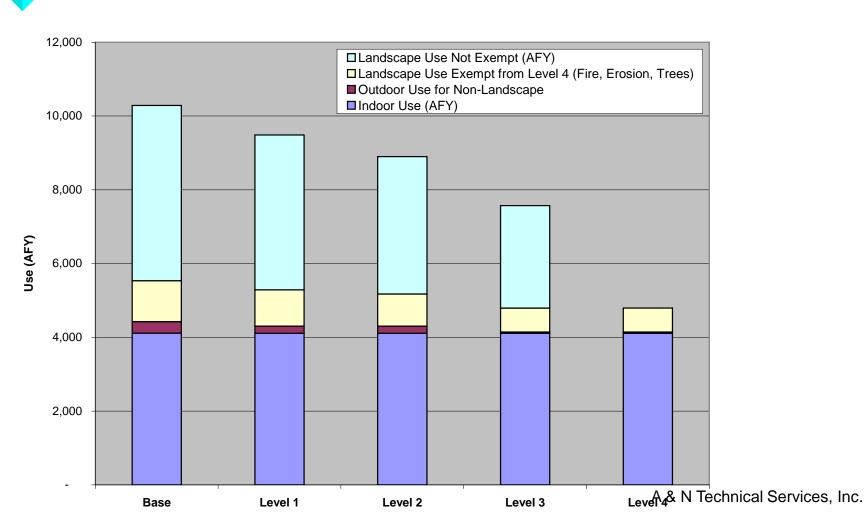
Supplier	Residential Rationing Program	Achievement, percent	
Marin Municipal Water District	Mandatory 57 percent per capita	65	
East Bay Municipal Utility District	Mandatory 35 percent per household	40	
Contra Costa County Water District	Mandatory 30 percent	25	
San Francisco Water Department	Mandatory 25 percent	30	
Los Angeles DWP	Mandatory 10 percent	16	
Sunnyvale Water Department	Voluntary 25 percent	26	
Santa Clara Valley Water District	Voluntary 25 percent	30	
City of Pleasanton	No program	19	

Source: Reproduced from "2007 Updated Edition, Draft Urban Drought Guidebook" State of California Department of Water Resources, Office of Water Use Efficiency and Transfers,

August 2007

A & N Technical Services. Inc.

Non-Price Conservation Tool: Estimated Savings by Restriction

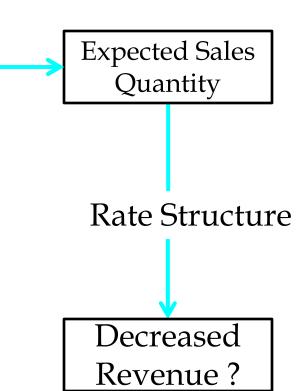

Model Ordinance Conservation targets:

- Level 1 Up to 10%
- Level 2 Up to 20%
- Level 3 Up to 40%
- Level 4 Abo ve 40%

Water use restrictions (vary by Level):

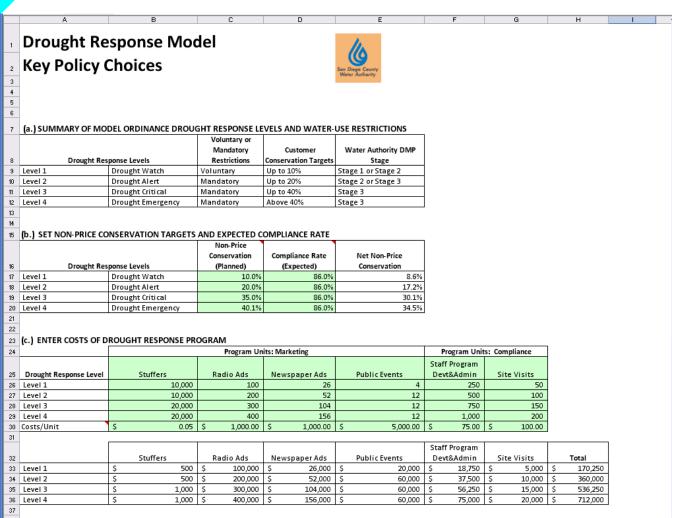
- Washing paved surfaces
- Irrigation
- Fountains, Lakes, and Ponds
- Vehicle Washing
- Leak Repair
- New Connections
- Water Allocations

Example: Estimating Outdoor Single Family Drought Savings Potential


Drought Response Model Design

Price-Induced Conservation

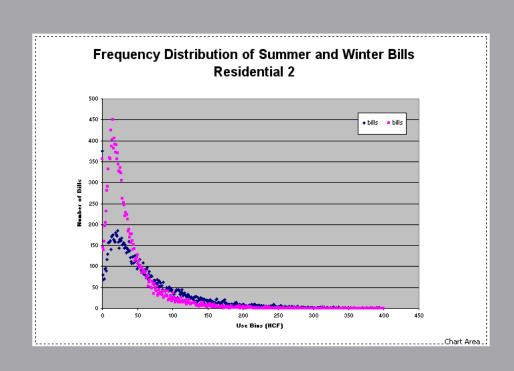
- varies by customer class
- varies by season


Non-Price-Induced Conservation

- Media Campaigns
- Public awareness
- Customer outreach
- Programs
- Water use restrictions
- Enforcement

A & N Technical Services, Inc.

Look and Feel of Generic Model

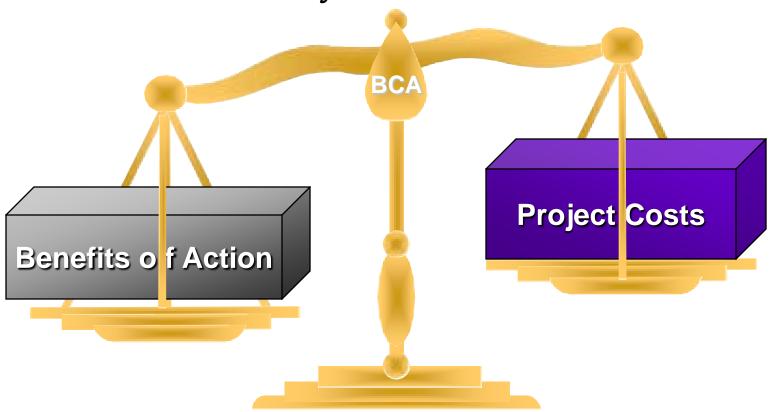


| A PolicyChoices / Summary / Input Res 1 / Model Res 1 / Input Res 2 / Model Res 2 / Input NonRes / Model NonRes / Rawl

Generic Model Outputs

	A	В	С	D		E	F		G
1		rought	Respor	rse Mo	de	el Sum	mary		
		•	•				•		
2									
-	_								
3	Test Year = 2008 2008								
4									
5	UNDER PRESENT RATE	· s							
	SINDER FRESEIVI RATE	Seasonal		Sales	C	ommodity			
6	Rate Class	Rate ?	Sales	Units	1	Revenues	Fixed Revenue	То	tal Revenue
_	Res_1	No	2,348,180	HCF	s	6,344,396		s	6,344,396
_	Res_2	No	1,402,861	HCF	\$	3,779,909		\$	3,779,909
	NonRes	No	404,607	HCF	Š	1,079,339	1	s	1,079,339
	Total		4,155,648	HCF	\$	11,203,644	-	\$	11,203,644
11			.,,		1.7			1 -	
12									
13	UNDER PROPOSED RAT	TES							
		Seasonal		Sales	С	ommodity			
14	Rate Class	Rate ?	Projected Sales	Units	_	Revenues	Fixed Revenue	_	tal Revenue
	Res_1	No	1,886,093	HCF	\$	6,002,921		\$	6,002,921
	Res_2	No	1,127,793	HCF	\$	3,565,526		\$	3,565,526
	NonRes	No	324,683	HCF	\$	956,100		\$	956,100
	Total		3,338,570	HCF	\$	10,524,547	-	\$	10,524,547
19	_								
	DIFFERENCE FROM PRE	SENT DATES							
	DITTERENCE TROUT IN	ISENT INCIES		Sales			Change in	9	6 Change in
22	Rate Class		Change in Sales	Units	% Ch	ange in Sales	Revenue	"	Revenue
	Res_1		(462,087)	HCF		-19.7%)	-5.4%
24	Res_2		(275,068)	HCF		-19.6%	\$ (214,383)		-5.7%
25	NonRes		(79,924)	HCF		-19.8%	\$ (123,239)		-11.4%
26	Total		(817,078)	HCF		-19.7%	\$ (679,096)	-6.1%
27									
28									
29	DIFFERENCE IN NET RE								
		Change in							
		Purchase	Change in Gross					L.	
30		Cost	Revenue	Revenue			Program Cost	Tota	al Net Impact
	Res_1 Res_2	\$ (587,646) \$ (349,810)						+	
-	NonRes	\$ (101,641)		\$ (21,598)	-			+-	
	Total	\$(1,039,096)					\$ 360,000	-	0
35		V(1,030,000)	V (075,030)	2 300,000			300,000	د ا	0
36									
37									
	◆ ▶ ▶ PolicyChoices								

Informative Graphics



Long Term Resource Planning

- Benefit-Cost Models Program Planning and Tracking
- Avoided Cost Models Conservation Program Benefits
- Integrated Planning Models
 - Risk, Uncertainty, and Resource Portfolios
 - Interactions Between Conservation and Supply Options

Why do WUE?

Is water efficiency worth it?

Why WUE Matters

(...and at no additional charge)

Water efficiency projects provide benefits.

If you understand the values produced by the effects of WUE, then better projects can be designed.

Benefits of Action

= f (WUE Impacts)

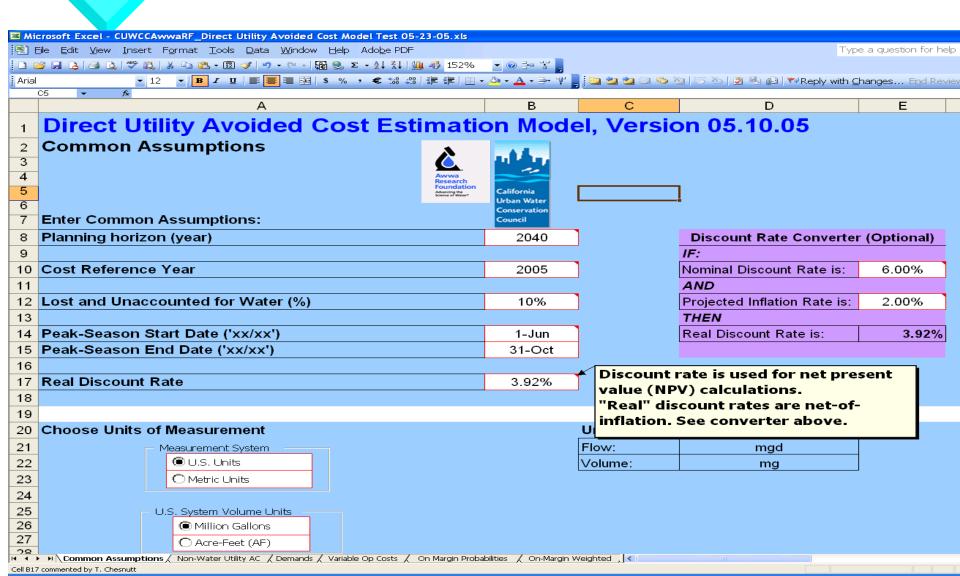
Benefits of Conservation are often defined in terms of the costs avoided

Avoided Cost analysis

- The cost of alternatives can be compared to a benchmark to estimate "avoided cost" (or "net benefit")
- ➤ The benchmark often reflects the cost associated with the typical or conventional means of producing the desired benefit

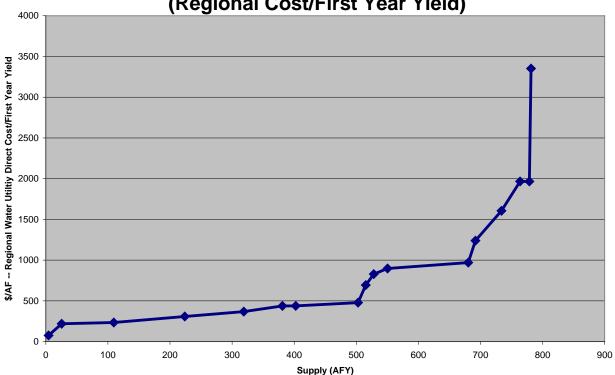
Integrated planning

- Avoided-cost analysis helps place supplyside and demand-side options on a level playing field for comparison.
- > Thus, avoided cost analysis plays a role in integrated resource planning and total water management.
- ➤ As in energy, the concept of avoided cost can promote consideration of conservation as a legitimate resource option.


Relevance of Avoided Costs

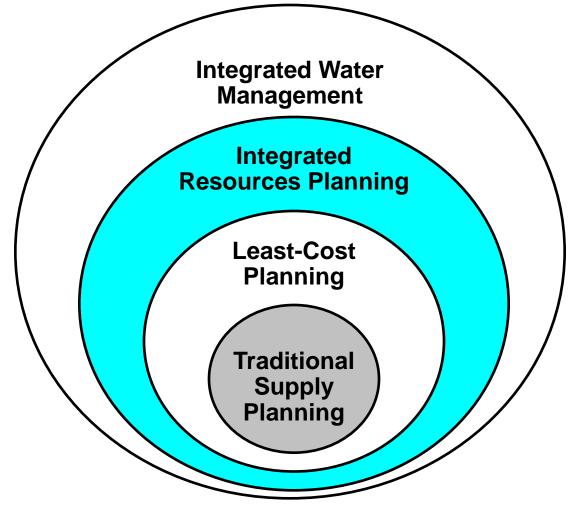
- Avoided cost concepts can be useful to water utilities
 - Making cost consequences of alternatives explicit
 - Minimizing long term costs of providing the benefits of water supply
- Avoided costs include:
 - the costs of foregone opportunities and
 - the costs of avoided environmental degradation
- Guidance and precedence exists for their methods and use

The WRF/CUWCC Direct Utility Avoided Cost Model


- Provides solid defensible estimates of avoidable costs from a utility perspective. (=potential Efficiency benefit)
- Allows costs to vary
 - By time of year (peak season)
 - By conveyance path (pumping zones, treatment or source differentials)
- Can handle costs avoided due to deferral or downsizing
- Also estimates bill impacts for different customer groups.
 A&N Technical Services, Inc.

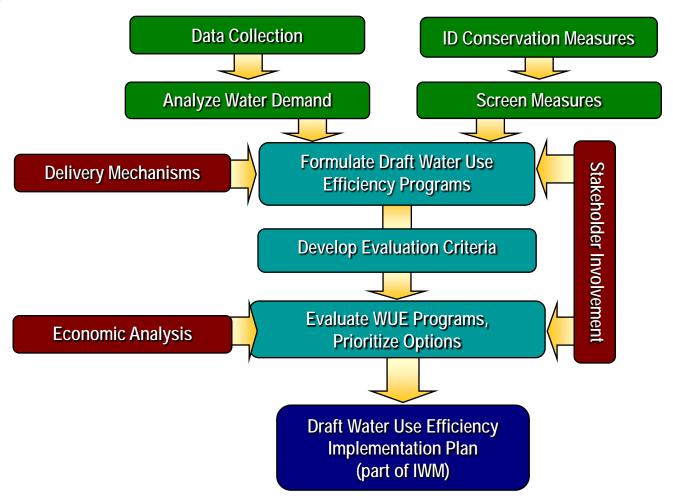
Avoided Cost Model

WRF Benefit-Cost Model – A Conservation Supply Curve



Integrated Water Management

- What characterizes IWM?
 - Equal consideration to supply- and demand-side alternatives (demand can be manipulated),
 - Explicit treatment of uncertainty,
 - Integrates short and long-run planning,
 - Acknowledges a broader concept of cost,
 - Addresses sustainability,
 - Involves all institutions with a stake, and
 - Emphasizes ongoing, open, and participatory decisionmaking process.


Integrated Planning

Source: Chesnutt, et al. Decision Support for Integrated Resources Planning, 1995

A & N Technical Services, Inc.

Example: Water Use Efficiency Plan

Terminology

- Conservation Measures
 - Technologies, Plumbing Fixtures, Management Practices,
- Delivery Mechanism
 - Education, Rebates, Incentives, Direct Install, Ordinances
- A Conservation Program =
 - Conservation measure(s) + delivery mechanism

Conservation Measures

Residential	Landscape	CII
Aerators	Audits	Analyst Survey I
Flappers w/Survey	Central Controllers	Analyst Survey II
High-Efficiency Washers	Education – Mem Agy	Cooling Tower Cond Meter
Irrig Eval with Timers	ET Controllers	Engineer Survey
Irrig Eval without Timers	Irrigation Controllers	Flush Valve Kit
Multi-Family Surveys	Moisture Sensors	High-Efficiency Washers
Weather-Based Controller	Protector del Agua Class	Industrial Process Improve
Showerheads		Pre-Rinse Spray Head
Showerheads - Distributed		ULF Toilets - Dual Flush
Surveys, Single Family		ULF Toilets - Flush Valve
Surveys, Single Family- Old		ULF Toilets - Tank Type
Toilet Displacement		ULF Urinals
ULF Toilets - Distribution		Water Broom
ULF Toilets - Rebate	ing or now plumbing of	Water Management Study

Inc.

Delivery Mechanisms

- How can Conservation measures be delivered?
- Delivery Mechanisms include a range

Education, Public Awareness

Program Marketing, Rebates & Incentives Legislation Ordinances Regulation

Information

Incentives & Active Programs

Requirement

Measures -> Programs -> Options -> IWM Options

Table 7: Summary of WUE Program Mixes Recommended for Portfolios

WUE Option ^a	Estimated Savings "Yield" ^b	Yield over Savings Life ^c	Program Cost ^d	Present Value Unit Cost ^e	Considerations
WUE1 Current Path (2007 Planned Programs) ^f	40 afy	632 af	\$227K	\$469/af	 Time to implement: Ongoing Not a potential emergency drought measure ^g Has project phasing potential ^h Has funding potential Promotes regional coordination
<u>WUE2</u> Aggressive	150 afy	1477 af	\$718K	\$597/af	 Implementation is ongoing Is a potential emergency drought measure ^g Has project phasing potential ^h Has funding potential Promotes regional coordination
WUE3 Maximize Water Savings	502 afy	7,906 af	\$9,495K	\$1,583/af	 Implementation is ongoing Is a potential emergency drought measure ^g Has project phasing potential ^h Has funding potential Promotes regional coordination

Report due in 2010...

- Conceptual Framework for Water Use Efficiency
- Institutions and Efficiency
- Planning Models and Methods
 - Short Term Financial Models
 - Adapting the Traditional Utility Finance Model to Include Conservation Pricing and WUE Programs
 - Long Term Resource Planning
 - Benefit-Cost Models Program Planning and Tracking
 - Avoided Cost Models Conservation Program Benefits
 - Integrated Planning Models Risk, Uncertainty, and Planning Portfolios
- Case Studies of Utility Conservation Implementation
- Decision Support Matrix and Best Implementation Practices

A Balanced Approach to Water Conservation: Removing Barriers and Maximizing Benefits

Sponsored by:

Water Research Foundation

Thomas Chesnutt, tom@antechserv.com A & N Technical Services, Inc.

Mr. Gary Fiske (Gary Fiske and Associates)

Mr. Eric Rothstein (Galardi Rothstein Group)

Dr. David Pekelney (A&N Technical Services)

Dr. Janice Beecher (Institute of Public Utilities, MSU)

Mr. David Mitchell (M.Cubed)