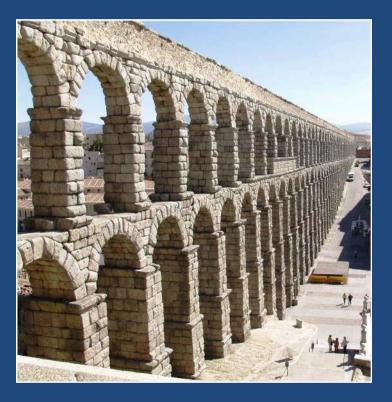
This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Sustainable Economic Stimulus Requires Decentralized Water Treatment Systems

Stormwater Treatment Wetland, Southwestern USA

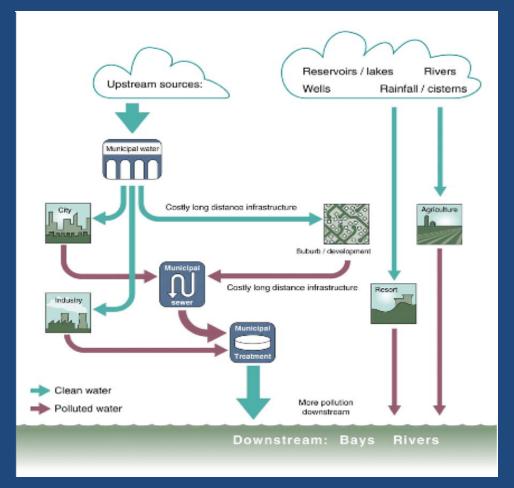
WaterSmart09 Innovations October 2009


Will Kirksey, PE Senior Vice President Worrell Water Technologies, LLC

Ecosystems as Infrastructure – Using Technology to Enhance Ecological Processes

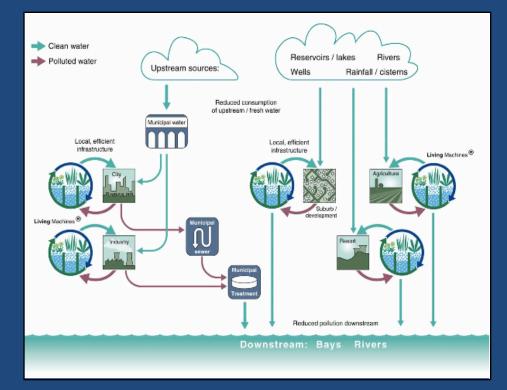
Overview

- A Sustainable Economy is Built on Sustainable Infrastructure
- Centralized Infrastructure has supported growth and health for centuries
- A 21st Century Economy can't rely on 4th Century Concepts
- Decentralized technology can help sustain the human economy and enhance nature
- Consider wastewater as an example


An Unsustainable Future

- Centralization supported
 - Improved health
 - Economic growth
 - Reduced pollution
- Conditions have changed
 - Diminishing returns
 - Maintenance growing exponentially
 - Strained treatment processes
 - Advancing Science and Technology

We are Here: Technology Replacing Nature



Centralized Model

- Once through
- Technology based
- Energy intensive
- Complex infrastructure
- Extensive GHG emissions
- High maintenance
- Inefficient water use
- Depletes water resources
- Pollutes downstream
- Strains the economy

We can be Here: Technology Enhancing Nature

Decentralized Model

- Extensive water reuse
- Ecologically based
- Low Energy
- Simpler infrastructure
- Minimized GHG emissions
- Lower maintenance
- Efficient water use
- Restores water resources
- Protects downstream
- Sustains the economy

How Do We Get There?

- Rehabilitate and extend infrastructure life
- Decentralize new construction
- Apply ecological technology and systems approaches
- Integrate with other economic activity

5,000 gpd Living Machine® system, Big Sur, CA

Rehabilitate and extend life of critical infrastructure

Evolutionary

- Build on framework of existing functioning infrastructure
- Rehabilitate to extend life
- Reduce loads with decentralized technologies
 New construction
 Replacement and Rehab

Decentralize New Construction

Decentralized Means:

- Miniaturized
- Diverse, localized/onsite
- Water reused near source
- Modular system construction
- Improved safety, security
- Regional resilience

Animal Shelter, Southwest USA, 30,000 gpd

Apply Ecological Technology

- Use productive natural treatment processes
- Recycle/reuse water
- Integrate with local water cycles
- Contain/convert pollution
- Fractal ecological systems approach to:
 - Specific treatment technology
 - Regional water systems

25,000 gpd Tidal Flow® Wetland at a School in Southern USA

Integrate with other economic activity

Evaluate in a broader framework

- Life Cycle Economics
- Energy Effectiveness
- GHG Impacts
- Creation of Livelihoods
- Creation of Businesses
- Strengthening Communities

1,200 gpd Living Machine and AC condensate harvesting system inside office building

Managing the Transition

Quality, Safety, and Consistency

- Uniform performance standards
- Alternative ownership/management structures
- Technical oversight
- Modified funding programs & tax incentives
- Formal performance measurement

200,000 gpd Living Machine® system, Zoo in Europe

Managing the Transition (continued)

Innovation in Methods and Structures

- Advanced ecological treatment technology
- New modeling tools & control technology
- New performance measurement algorithms
- Ongoing RD&D

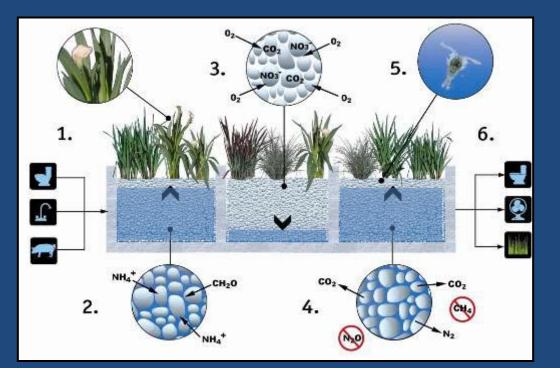
5,000 gpd Living Machine® at a School in Northern USA

An Example Ecological Treatment System

Living Machine®

The Living Machine® Tidal Wetland Technology

- Ecologically sound, aesthetic
- Treats blackwater to produce high quality, reusable water
- Small footprint
- Competitive cost & Low maintenance
- Low GHG Emissions
- Broad regulatory approval
- Low energy consumption
- Eligible for LEED credits
- Crop production potential


Office Building, Florida 1,200 gpd

Living Machine[®] Systems How Do they Work?

- Engineered systems packed bed with extensive biofilm surface
- When the cell fills carbohydrates and ammonia attach
- Oxygen fills the cell as it drains and converts ammonia to nitrate and carbohydrates to CO₂
- Water fills the cell and nitrate becomes N₂ gas and remaining carbohydrates are removed.
- 5. A complex micro food chain consumes remaining biofilms

6. Treated water can be reused for irrigation, process water, toilet flushing, etc.

Living Machine[®] Systems Already Part of the Transition

- Reducing loads on existing infrastructure
- Decentralized, modular new construction
- Applying ecological technology and systems approaches
- Integrating with other economic activity

30,000 gpd Living Machine® system, Southeast USA

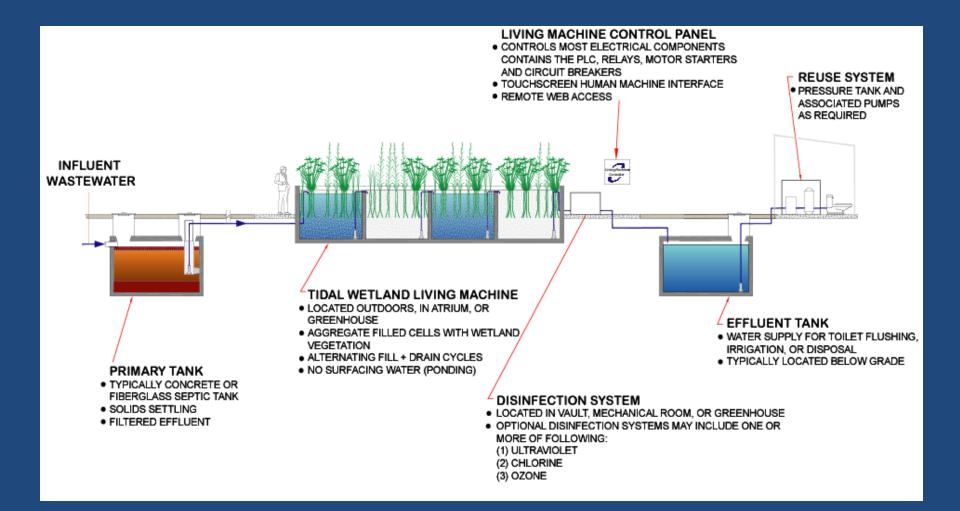
Summary

We've been here:

Technology Replacing Nature

What's happening now:

Technology Enhancing Nature



Esalen Living Machine, Big Sur, CA, 5000 gpd

Living Machine[®] Systems

26,000 gallons per day (100 m³) ~ 100 Homes Size Vs Energy 3.0 r Membrane Bioreactor - GE, Siemens + Very Compact, High Quality Effluent Consumption - High Energy Use, CL₂ Flushing **Onsite Treatment** Activated Sludge 2.5 + Compact Systems - Low Quality Effluent, Difficult Operations Energy Use (kWhr m⁻³) **Orenco Systems - Advantex** +Relatively Simple Construction/Operations 2.0 - Medium Energy Use for High Quality Effluent 1.5 Aerated Wetland - Stantec + Simple Construction/Operations - Large Footprint 1.0 **Tidal Wetland Living Machine** +Compact, Efficient, High Quality Effluent 0.5 -Sensitive to Site Design 2 6 8 10 12 0 4 Treatment Footprint (m² m⁻³)

Ecological Treatment

Example Applications

Housing Developments	 Build-out of scalable capacity as needed Water reuse for landscaping or common areas Avoids connection fees, long distance pumping
Agriculture	 Treatment of CAFO wastewater Treatment of food processing wastewater Water reuse for irrigation and process water
Schools	 Functional, economic and educational Water reuse for landscaping, toilet flushing or irrigation
Hotels / Resorts	 Green Technology, cost-effective, aesthetic feature Water reuse for landscaping, toilet flushing or irrigation
Municipal Wastewater	 Reduces system overload and expansion need Promotes local water conservation and reuse Allows 'sewer mining'

Summary

- Invests in 21st Century Infrastructure
- Applies Ecological processes
- Reduces energy consumption
- Reduces GHG significantly
- Creates local employment
- Provides a community asset and business opportunities
- Creates educational opportunities

Types of Ecological Technologies

- Rainwater harvesting
- Stormwater wetlands
- Living Machine[®] wastewater treatment
- Sewer mining
- AC Condensate harvesting
- Hydroponic reactors
- Water efficiency measures
- Watershed protection
- Water reuse
- Permeable pavements
- Etc.

21st Century Infrastructure Strategies for Ecological Decentralized Systems

21 st Century Infrastructure	Ecological Decentralized Reuse
<u>Rehabilitate</u> and extend the life of current critical infrastructure	Reduces load growth on existing treatment systems
Shift to more <u>decentralized</u> technologies	Provides local, onsite solution with modular, miniaturized technology
Utilize <u>ecological</u> processes	Adapts and enhances tidal estuarine ecosystem
Close material and energy cycles	Promotes water reuse; no waste stream, toxic chemicals, or GHG emissions
Increase in efficiency of energy and water use	Reduces energy and water consumption
Integrate planning and design of infrastructure systems	Supports comprehensive water planning, energy conservation, agriculture, GHG reduction, security, etc.

