This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

SAND Number: 2009-4898 C

October 9, 2009

Marti Adams
Water Treatment and Conservation Engineer

Presentation Outline

- Site Description
- Cooling Tower Overview
 - Equipment
 - Water Treatment
- Reclaim System Description
- Project Timeline and Improvements
- Controls and Programming Information
- Questions

Site Description – Sandia National Laboratories

- Located on Kirtland Air Force Base in Albuquerque, NM
- 952 buildings totaling 6.9 million gross square feet
- Desert climate with an average rainfall of 9" per year
- Water source is Santa Fe group aquifer system
- 35% of Sandia water consumption is due to Ultra Pure water production
- 25% of Sandia water consumption is due to Cooling

Cooling Tower System

Basic System

Cooling Tower Treatment

Scaling

- Cycles of Concentration
 - $\bullet C = (E+D+B)/(D+B)$
 - C= Cycles of Concentration
 - E= Evaporation flow
 - D= Drift Loss flow
 - -B= Blow Down flow

OR

• C= Concentration in CT (Hardness, Silica, etc.)
Concentration in MU Water (Hardness, Silica, etc.)

Cooling Tower Treatment

Biological Growth

- Reclaim water needs to be treated with a biocide due to the increased biological activity
- Monitor Biological Activity
 - Regular Sample Analysis (Dip Slides)
 - Visual inspection of fill for algal growth

Corrosion

- Use of proper chemical and controls minimizes corrosive effects of reclaim water
- Monitor Corrosion
 - Install Coupon Rack and LPR Probe
 - Regularly inspect Condenser tubes

Reclaim System

- 858 North
 - Utilized for Process and Cooling Loads
 - Serves 12 Buildings
 - 3 Air Scrubbers and 4 Cooling Towers
- 858 J Central Utility Building (CUB)-
 - Utilized for Process and Cooling Loads in Process and Cooling Loads
 - Serves 2 Buildings
 - 5 Air Scrubbers and 5 Cooling Towers
- 899A Cub
 - Utilized in Process and Cooling Loads
 - Serves 2 Buildings
 - 4 Cooling Towers and Water Feature

Project Timeline and Improvements

- Initial Project Start Up-1999
- Infrastructure Connecting Air Scrubbers Installed- 2002
- Reclaim System Shutdown for Chiller Slurry problems 2005
- Chemical Mechanical Polishing (CMP) System Installed- 2007
- MESA complex is constructed and connected to reclaim system- 2007
- Bicarbonate Injection System Enhancement Installed-2008

Project Start Up 1999

- Installed a pump in Acid Waste Neutralization (AWN)
 Room
- Installed controls for pump:
 - Pump to tanks if conductivity is below 1100 μS/cm
 - Storage Tank level controls
- Installed three 20,000 gallon storage tanks
- Connected gravity feed line from storage tanks to cooling tower sump
- Installed control valves to use well water make up as a backup supply

Connect Air Scrubbers 2002

- Piping to connect 3 air scrubbers to reclaim system is installed
- Operation controls established for specific processes that cause an excess of Fluoride to enter into the AWN.
- Air Scrubbers use approximately 5 gpm or approximately 2.6 million gallons per year

Chemical Mechanical Polishing (CMP) System Installed 2007

- CMP waste separation unit is installed
- 5 CMP polisher tools utilizing slurry are piped into the CMP system
- Control Valves installed:
 - If pH is in the allowable range discharge to sanitary sewer system
 - If pH is to be adjusted then send to AWN system and bypass reclaim system for 4 hours after last of slurry is pumped into AWN

MESA Complex Constructed 2007

- Large project >\$300 Million
- 2 New Central Utility Buildings (CUBs) built
 - 858J CUB: 5 cooling towers,
 multiple chillers,
 1 heat exchanger
 - 899A CUB: 4 cooling towers, multiple chillers
- Reclaim water used for both CUBs, scrubbers, and water feature

Chemical Mechanical Polishing Upgrade 2008

- Slurry contaminated water that requires slight pH adjustments are adjusted utilizing a bicarbonate injection system
- System enlarged to more effectively treat waste stream volume
- The system has not diverted to the sanitary sewer due to slurry contamination since the installation of the upgrade

Controls Information and Programming

Conductivity

- New set point in AWN room:
 - Conductivity > 900 μS/cm: bypass reclaim tanks
 - Conductivity < 700 μ S/cm: reclaim sent to cooling tower system

• pH

- Divert reclaim water unless pH is between 7-8
- Fluoride
 - Divert reclaim water if fluoride is above 15 ppm for more than 30 minutes; bypass reclaim until fluoride
 10 ppm

Reclaim Water Usage

Water Savings Due water Reclaimed

Year	Water Savings in Gallons
1999 to 2004	9,518,000 per year
2005	2,873,000 (Construction)
2006	Under Construction
2007	12,530,000
2008	25,209,294

Questions

Thank you to:

Malynda Cappelle- Senior Member of Technical Staff

Russell Matheson- Building Operator

Dale Bowen- DI plant Operator

David Bloom- AWN Operator

Les Norman-Industrial Water Engineering

