This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Accounting for the Water – Energy - Greenhouse Gas Relationship

Gary Klein Affiliated International Management, LLC. <u>gary@aim4sustainability.com</u> 916-549-7080

Table of Contents

- The Water-Energy Nexus
- Water Embedded in Energy
- Energy Embedded in Water
- What Can Water and Waste Water Agencies Do?

The Water-Energy Nexus

The Water-Energy Nexus

Drought in North Carolina A Birdseye View... December 13, 2007, 1 PM

Courtesy of:

- Lana Armstrong
- Waterfront Sportsman
- Dale Swiggett
- Bob Epting

Photographs by:

• Eric Schneider

Falls Lake, North Carolina

Water level down approximately 20 feet

Jordan Lake, North Carolina

Wastewater Treatment

These are source of water running in the "rivers" shown entering Falls Lake and Jordan Lake

Sharon Harris Nuclear Power Plant

Evaporates approximately ½ gallon of potentially potable water per kWh to produce electricity

Water Embedded in Energy

U.S. Sources of Electricity

- Thermoelectric power accounts 90% of all electricity
 - Coal (49%)
 - Natural Gas (20%)
 - Nuclear (19%)
 - Petroleum (2%)

EIA http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html

Primary Effects of Once Through: Withdrawals

- Thermoelectric power generation accounts for approximately:
 - 136 billion gallons of water withdrawals per day
 - 39% of total freshwater withdrawals
 - 52 percent of fresh surface-water withdrawals.
- A 500 MW power plant uses over 12 million gallons of water per hour.
 - Equivalent to the volume of 436 Olympic sized swimming pools each day!

Department of Energy/Office of Fossil Energy's Power Plant Water Management R&D Program. Summary July 2005. (Pg. 1) <u>http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/IEP_Power_Plant_Water_R&D_Final_1.pdf</u>

Primary Effects of Once Through: Rivers

- Cooling water intakes can endanger billions of fish, larvae and other aquatic organisms
- Low quality returning water:
 - Altered chemical composition
 - Higher temperature

 Can affect fish, other aquatic organisms, animals and the local habitat

PIER Project Summary, "Wet, Dry, Hybrid Wet/Dry and Alternative Cooling Technologies." <u>http://www.energy.ca.gov/research/environmental/project_fact_sheets/100-98-001-6.html</u>

Primary Effects of Recirculating Wet: Consumption

 Approximately 25 percent of all nonagricultural fresh water consumption U.S. is used for thermoelectric power

generation.

Water-Energy Nexus: A Necessary Synergy for the 21st Century National Conservation Training Center of the U.S. Fish and Wildlife Service November 17-19, 2008 PIER Project Summary, "Wet, Dry, Hybrid Wet/Dry and Alternative Cooling Technologies." http://www.energy.ca.gov/research/environmental/project_fact_sheets/100-98-001-6.html

Consumption Trends: 2030

- Electricity demand increase of 50%
 - consumption of water for electrical energy production could more than double.
 - could equal the entire country's 1995 nonagricultural water consumption.

Energy Demands on Water Resources. U.S. Department of Energy. (Pg. 10-11) 2006 http://www.rivernetwork.org/rn/climate/energydemands0

Hydroelectricity

 Accounts for an estimated 3.8 billion gallons of water loss per day

Energy Demands on Water Resources. U.S. Department of Energy. (Pg. 20) 2006 <u>http://www.rivernetwork.org/rn/climate/energydemands</u>

Water Consumption per kWh

Power Provider	Gallons Evaporated per kWh at Thermoelectric Plants	Gallons Evaporated per kWh at Hydroelectric Plants	Weighted Gallons Evaporated per kWh of Site Energy
Western Interconnect	0.38 (1.4 L)	12.4 (47.0 L)	4.42 (16.7 L)
Eastern Interconnect	0.49 (1.9 L)	55.1 (208.5 L)	2.33 (8.8 L)
Texas Interconnect	0.44 (1.7 L)	0.0 (0 L)	0.43 (1.6 L)
U.S. Aggregate	0.47 (1.8 L)	18.0 (68 L)	2.00 (7.6 L)

"Consumptive Water Use for U.S. Power Production." National Renewable Energy Laboratory, 2003 <u>http://www.nrel.gov/docs/fy04osti/33905.pdf</u>

Water: Yet Another Reason to Push for Wind and Solar

Source	Gallons	
	Per kWh	
Wind	0.001	
PV Solar	0.030	V
Nuclear	0.62	
Coal	0.49	CARDEN LANDER
Oil	0.43	
Hydro	18.27	

Gipe, Paul. "Wind Energy Comes of Age," 1995 http://www.awea.org/faq/water.html

Energy Embedded in Water

California's Water Supply Systems

Water Use Cycle Energy Intensities

(kWh/MG)

Source: California Energy Commission, 2005 Integrated Energy Policy Report

Water-Related Energy Use-CA 2001

	Electricity	Natural Gas	Diesel
	(GWh)	(Million Therms)	(Million Gallons)
Water Supply and Treatment			
Urban	7,554	19	?
Agricultural	3,188		
End Uses			
Agricultural	7,372	18	88
Residential			
Commercial	27,887	4,220	?
Industrial			
Wastewater Treatment	2,012	27	?
Totals	48,012	4,284	88
2001 Consumption	250,494	13,571	?
Percent of Energy Use	19%	32%	?
CO ₂ e (Million Metric Tons)	56	50	

Approximately 20-25 % of the nation's stationary energy use goes to water in some form.

Source: California Energy Commission, 2005 Integrated Energy Policy Report

Regional Differences

	Northern	Southern	
	California	California	
	kWh/MG	kWh/MG	
Supply & Conveyance	150	8,900	
Water Treatment	100	100	
Distribution	1,200	1,200	
Wastewater Treatment	<u>2,500</u>	<u>2,500</u>	
Regional Total	3,950	12,700	

Source: California Energy Commission, 2005 Integrated Energy Policy Report

What is the Water-Energy Relationship where you live or work?

Water & Wastewater System Energy Use

- U.S. annual total = 75 billion kilowatt hours per year
- 3-4% of total U.S. consumption of electricity
- Equal to entire residential electricity demand of California
- More than entire energyintensive pulp/paper and petroleum sectors *combined*

Sources: Pacific Institute & NRDC

What Can Water and Waste Water Agencies Do?

Estimating Energy Intensity

- Call your water/wastewater utility and ask some questions
 - Water Utility
 - What was your energy bill?
 - How much water did you treat and deliver to customers?
 - Waste Water Utility
 - What was your energy bill?
 - How much waste water did you collect and treat?
 - To better understand the opportunities:
 - Do you have water/energy use data categorized by month?
 - Do you have historical data?
 - What types of water sources supply the system?
 - » Is the data separated by water source or facility?
 - » Which is the primary source?
 - » What time of the year are these sources used?

The following slides are provided courtesy of:

Bevan Griffiths-Sattenspiel

River Network bgriffiths@rivernetwork.org (503) 542-8395

Portland, Oregon

- Two Sources of Drinking Water
 - Gravity fed used most of the year
 - Groundwater pumped in the summer months when gravity cannot meet peak demands
- Two water treatment facilities
 - A large 73 MGD facility
 - A small 7.1 MGD facility
 - Unable to get disaggregated data
 - Numbers seem fairly typical

Portland, Oregon

- 2 Water Sources:
 - -Gravity
 - •570 kWh per million gallons
 - -Groundwater
 - •3710 kWh per million gallons

Groundwater pumping consumes 6.5 times more energy per unit of water The following slides are provided courtesy of:

Mary Ann Dickinson

maryann@aw4e.org

(773) 360-5100

Alliance for Water Efficiency

Comparative Energy Usage

Supply source: Lake Water

Pumping to Treatment Plant 636 kWh/AF (1,953 kWh/MG) Treatment 395 kWh/AF (1,213 kWh/MG) Wastewater Collection 596 kWh/AF (1,830 kWh/MG) Wastewater Treatment 1,299 kWh/AF (3,988 kWh/MG)

Total: 2,926 kWh/AF (8,984 kWh/MG)

Comparative Energy Usage

Supply source: Ground Water

Pumping to Treatment Plant 600 kWh/AF (1,842 kWh/MG) Treatment 395 kWh/AF (1,213 kWh/MG)

- Wastewater Collection 596 kWh/AF (1,830 kWh/MG)
- Wastewater Treatment 1,299 kWh/AF (3,988 kWh/MG)

Total: 2,890 kWh/AF (8,873 kWh/MG)

Comparative Energy Usage Supply source: State Water Project

- Pumping through Central Valley to Lake Silverwood 3,300 kWh/AF (10,131 kWh/MG)
- Pumping from Lake Silverwood to Lake Arrowhead Treatment Plant 2,550 kWh/AF (7,829 kWh/MG)
- Treatment 395 kWh/AF (1,213 kWh/MG)
- Wastewater Collection 596 kWh/AF (1,830 kWh/MG)
- Wastewater Treatment 1,299 kWh/AF (3,988 kWh/MG)

Total: 8,140 kWh/AF (24,991 kWh/MG)

Water-Energy Relationship: Synergies

- ✓ End-User Water and Energy Conservation
 - ✓ Saving water can save energy
 - \checkmark Saving energy can save water

✓Water and Wastewater Utility Operational Efficiency

✓ Increasing water and wastewater system efficiency reduces energy in the water use cycle

✓Water Storage

- ✓ Increased water storage and more flexible water storage shifts peak energy requirements
- ✓ Pumped storage increases peak electric generation and improves electric system efficiency

✓ Improve Price Signals

- $\checkmark~$ Time of use water rates and meters
- $\checkmark~$ Time of use electric rates and meters

✓ Renewable Generation by Water and Wastewater Utilities

- ✓ Increase generation from in-conduit hydro and biogas. Add generation from solar and wind.
- ✓ Assist in meeting California's renewable generation goals

If we did all this,

what would be the combined impact on GHG emissions?

Resources

California Energy Commission

www.energy.ca.gov

2005 Integrated Energy Policy Report,

Chapter 8 Integrating Water and Energy Strategies

http://www.energy.ca.gov/2005publications/CEC-100-2005-007/CEC-100-2005-007-CMF.PDF

California's Water-Energy Relationship-Final Staff Report

http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF

Refining Estimates of Water-Related Energy Use in California

http://www.energy.ca.gov/2006publications/CEC-500-2006-118/CEC-500-2006-118.PDF

Resources

California Public Utilities Commission

www.cpuc.ca.gov

- Water Action Plan <u>http://www.cpuc.ca.gov/static/hottopics/3water/water_action_plan_final_12_</u> 27_05.pdf
- Joint Agency Symposium: "The Regulatory Challenge Linking Water and Energy" March 28, 2006. <u>http://energy.ca.gov/process/water/2006-03-</u> 28_symposium/index.html
- Water-Energy Partnership
- CPUC Rulemaking 06-04-010 on Energy Efficiency – Proceedings

http://www.cpuc.ca.gov/Published/proceedings/R0604010.htm

Resources

- Climate Action Team and Initiatives
 - <u>http://www.climatechange.ca.gov/climate_action</u> <u>team/index.html</u>
- State Water Resources Control Board (SWRCB) Calendar
 - <u>http://www.swrcb.ca.gov/board_info/calendar/20</u> 08.html
- California Department of Water Resources (DWR)Water Plan
 - <u>http://www.waterplan.water.ca.gov/</u>