CRUNIVERSITY OF CALIFORNIA

Wastewater Reuse for Agriculture: Development of a Regional Water Reuse **Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources**

Introduction

Wastewater Reuse Facts

- California (since 1890)
- Agricultural water use: 35-45 MAF per year
- Treated wastewater: 5 MAF per year
- Current wastewater reuse: 450-580 thousand AF per year
- Israel (since 1948)
- 75% of wastewater is reused for agricultural irrigation \checkmark
- Australia (since 1990s)
- 10% of water used in mainland capital cities is reused for \checkmark toilet flushing and landscape irrigation
- Wastewater Reuse for Irrigation
 - Cost reduction in synthetic fertilizers
 - Suitability for Irrigation
 - Salinity
 - Heavy metals
 - Pathogens
 - Potential PPCPs and EDCs

Objectives

- Develop a regional water reuse decision-support model (RWRM)
 - Cost-effective irrigation solutions
 - Citrus
 - Turfgrass (Unrestricted vs. Restricted access)
 - Cost reduction in synthetic fertilizers

Model Scenarios

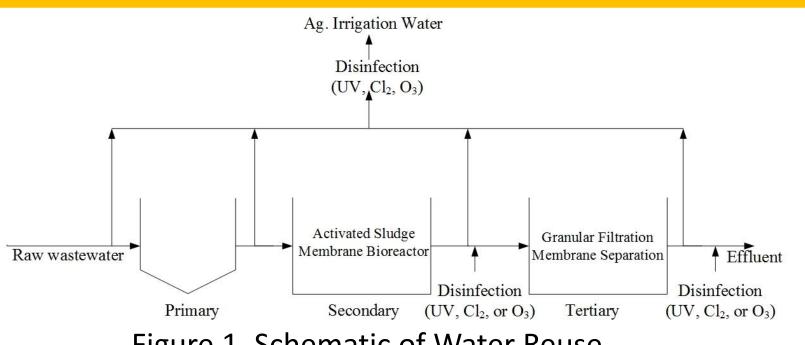
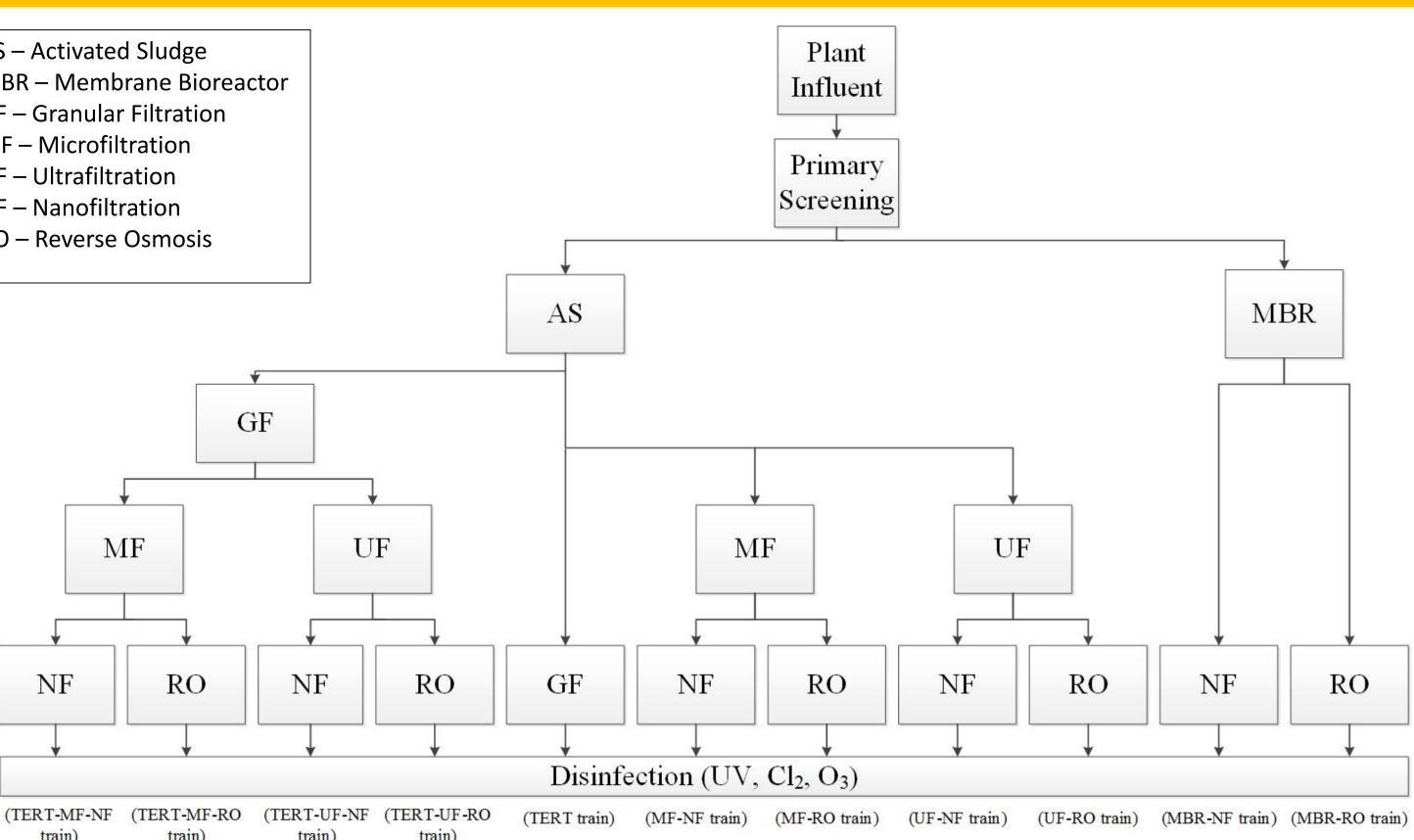
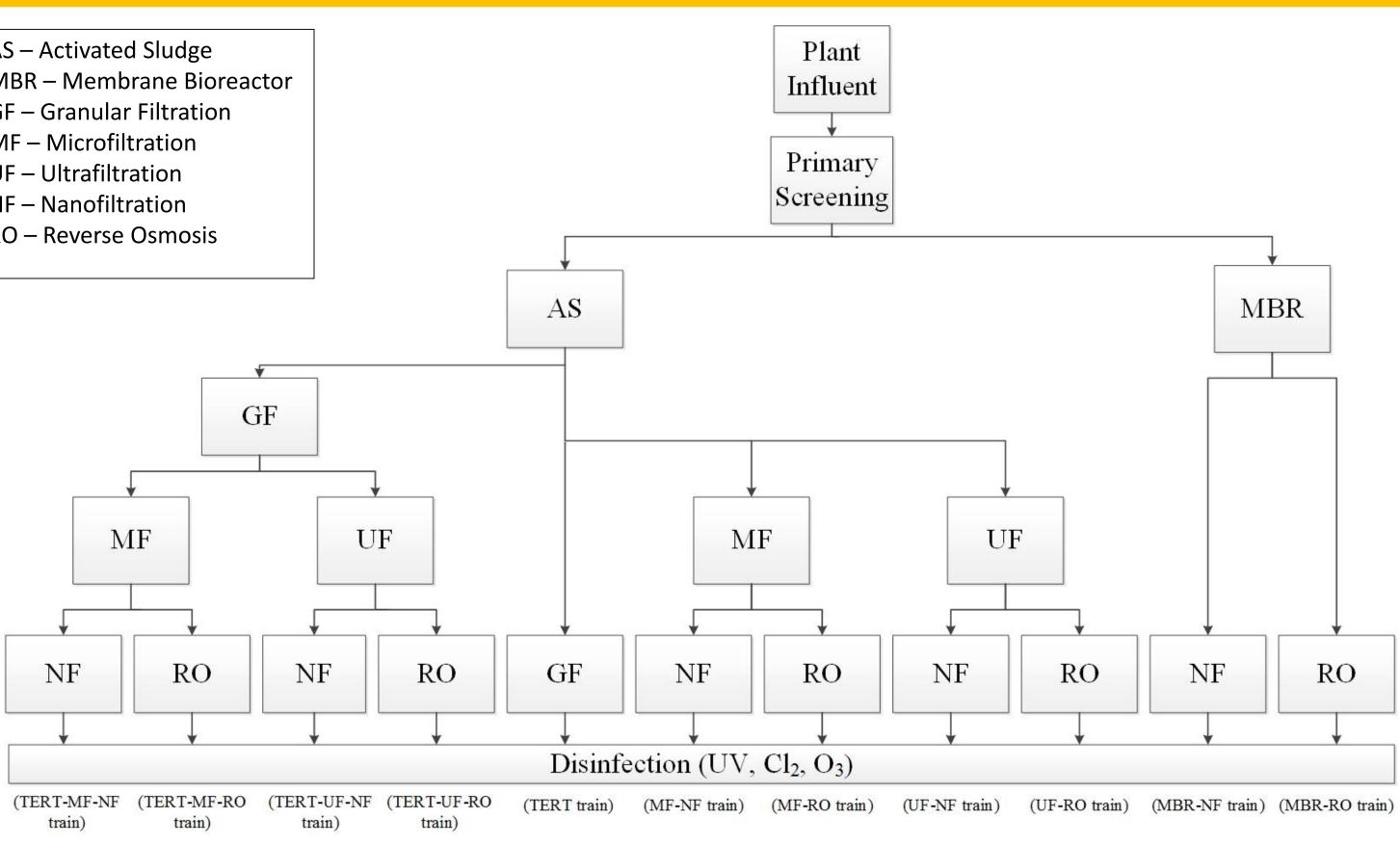




Figure 1. Schematic of Water Reuse

- Scenario A: With crop nutrient guidelines (Baseline)
 - Using irrigation guidelines for each crop
 - Based on average concentrations of constituents of interest in typical irrigation surface/groundwater
- Scenario B: Without crop nutrients guidelines
 - Insufficient nutrients in wastewater to cause harm
- Scenario C: Without crop nutrient and bicarbonate guidelines Residual Sodium Carbonate (RSC) ≤ 1.25 meq/L

AS – A	4
MBR	
GF – 0	3
MF-	ſ
UF – U	
NF – I	
RO –	F

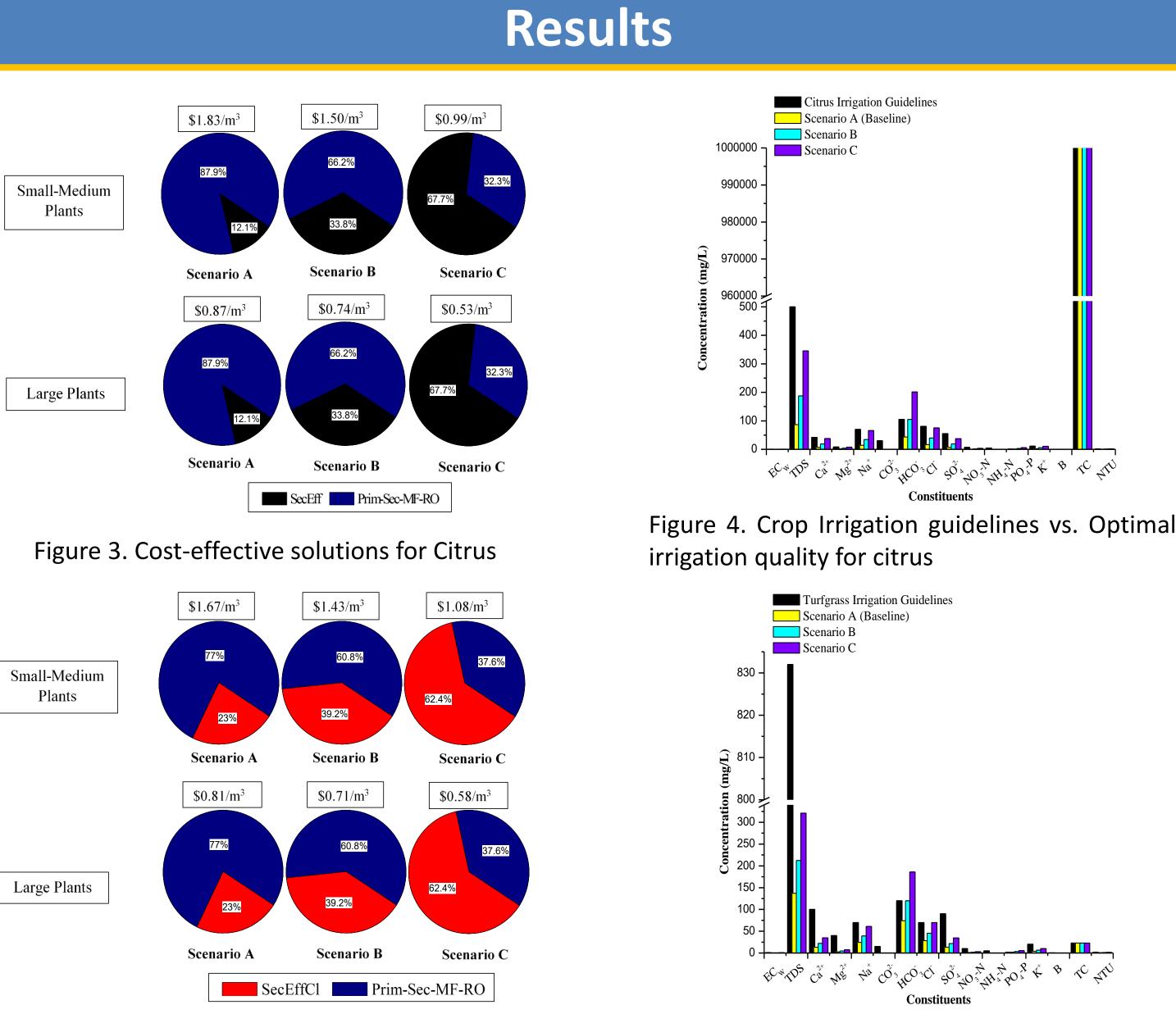


Figure 5. Cost-effective solutions for turfgrass (restricted access)

Quynh Tran¹, David Jassby¹, and Kurt Schwabe² ¹Department of Chemical and Environmental Engineering, ²School of Public Policy, University of California, Riverside, CA 92521

Modeling Methodology

Figure 2. Different treatment train processes corresponding to different GAMS treatment systems

Figure 6. Crop Irrigation guidelines vs. Optimal irrigation quality for turfgrass (restricted access)

Nutrients

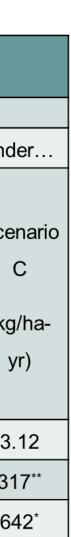
Table 1. Nutrients supplied

	Citrus				Turfgrass								
	Nutrients supplied via												
		Blended	wastewater	under		Blended wastewater und							
	Synthetic Fertilizer				Synthetic								
		Scenario	Scenario	Scenario	Fertilizer	Scenario	Scenario	Sce					
Alone	A	В	С	Alone	A	В							
	(kg/ha-yr)	(kg/ha-	(kg/ha-	(kg/ha-	(kg/ha-	(kg/ha-	(kg/ha-	(kg					
		yr)	yr)	yr)	yr)	yr)	yr)	2					
Ν	100-400	0.88	1.32	2.00	98-195	1.37	2.20	3.					
P ₂ O ₅	0-228 [*]	33.1	87.2**	172**	49+	120**	201**	3′					
K ₂ O	135-224	37.5	90.8	174	146	128	208*	64					

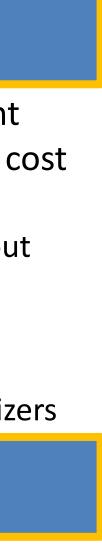
Table 2. Cost saving on synthetic fertilizer

-							
Citrus				Turfgrass			
Costs from	Synthetic fertilizer cost savings under			Costs	a au imana umata		
Synthetic Fertilizer Alone (\$/ha-yr)	Scenario A (\$/ha-yr)			F	Scenario A (\$/ha-yr)	Scenario B (\$/ha-yr)	Sce (\$/h
343.97	0.76	1.14	1.73	168.75	1.18	1.90	2.
270.88 [*]	39.48	104.14**	204.96**	58.29	143.35**	239.67**	378
163.09	26.91	65.13	124.65	105.04+	91.96	148.82**	230
(777.94)	67.15	170.41	331.34	(332.08)	236.49	390.39	61 [,]
	Synthetic Fertilizer Alone (\$/ha-yr) 343.97 270.88* 163.09	Costs from SyntheticSynthetic savFertilizerScenario AloneA(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)343.970.7639.48163.0926.91343.91	Costs from SyntheticSynthetic fertilizer savings under ScenarioFertilizerScenarioScenarioAloneAB(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)343.970.761.14270.88*39.48104.14**163.0926.9165.13	Costs from SyntheticSynthetic fertilizer cost savings underFertilizerScenarioScenarioAloneABC(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)343.970.761.141.73270.88*39.48104.14**204.96**163.0926.9165.13124.65	Synthetic fertilizer costCostsCosts from Synthetic FertilizerSynthetic ScenarioCosts fromAlone ($$/ha-yr$)Scenario B ($$/ha-yr$)Scenario C ($$/ha-yr$)Synthetic Fertilizer Alone ($$/ha-yr$)343.970.761.141.73168.75270.88*39.48104.14**204.96**58.29163.0926.9165.13124.65105.04*	Synthetic fertilizer costCostsSynthetic fertilizer costCostsSyntheticSyntheticScenarioScenarioScenarioSyntheticScenarioScenarioScenarioAloneABCAloneAloneAloneAloneAloneAloneScenario(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)(\$/ha-yr)ScenarioAA343.970.761.141.73168.751.18(\$/ha-yr)143.35**163.0926.9165.13124.65105.04*91.96	Synthetic fertilizer cost savings underCostsSynthetic fertilizer savings underSynthetic Fertilizer Alone $(\$/ha-yr)$ Scenario Scenario B $(\$/ha-yr)$ Scenario Scenario C $(\$/ha-yr)$ Synthetic Fertilizer Alone $(\$/ha-yr)$ Scenario Scenario C $(\$/ha-yr)$ Scenario Scenario Alone $(\$/ha-yr)$ Scenario Scenario $(\$/ha-yr)$ Scenario Scenario $(\$/ha-yr)$ 343.970.761.141.73168.751.181.90270.88*39.48104.14**204.96**58.29143.35**239.67**163.0926.9165.13124.65105.04*91.96148.82**

Conclusions


- RWRM optimized blending combinations across different treated municipal wastewater effluents with the lowest cost from the MF-RO train
- The most cost-effective irrigation solution was found without crop nutrients and bicarbonate constraints
- The driving force behind the high costs and lower nutrient concentration outcomes was RO fraction
- Scenario C offered maximum cost saving on synthetic fertilizers

Future Work


- Effect of drought on the quality of the discharge effluents from wastewater treatment plants into streams and groundwater systems
- Impacts of drought on agricultural production
- Design efficient wastewater treatment processes based on the characteristics of demand and provide low-cost reliable water within urban scarce water environments

Acknowledgements

The research was supported by USDA/AFRI Grant Program (2015-68007-23191) and NIFA-BARD Program (Project No. NB-8307-14)

