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Energy-Water	Interaction
Thermoelectric	Power	Plants
• Highest	freshwater	withdrawal	source

• Increase	in	water	consumption	through	
energy	demand	and	shift	to	evaporative	
cooling

• Water	consumption	projected	to	increase	
between	36-43%	by	20353

• Impacted	by	regional	water	stress

CO2 Capture,	Utilization,	and	Storage	(CCUS)
• Increase	power	plant	water	consumption	by	

50-90%4

CCUS	with	EWR	Flowchart
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High Volume
(metric	tonnes)

Depth	
(ft.) Thickness	(ft.) TDS	(ppm)

52,480,896 11,816 380 64,359

Thermoelectric	
Power	Plant

Plant	Annual Net	
Generation	(MWh)

Plant	Annual Net	CO2
Emissions	(metric	tonnes)

Jim	Bridger’s 13,625,134.8 13,603,135.7

Impact
This research is a systems level approach to identify
the viability of CCUS with EWR and to identify ideal
locations for the operation. Current results focus on
data collection through NATCARB and eGRID resources,
which will be incorporated into a model that explores
simultaneous optimization of CO2 storage and water
extraction. The model will compare CO2 injection and
storage with brine extraction and the resulting
desalination treatment necessary to treat and provide
a usable water source. This comparison will determine
if the benefit of increased CO2 storage through brine
production outweighs the costs associated with brine
extraction, treatment, and disposal.

Abstract
Carbon dioxide (CO2) capture, utilization, and
storage (CCUS) may reduce CO2 emissions
through the capture of CO2 from power plants
and injection into deep saline aquifers for
storage. The extraction of brine in surrounding
wells through Enhanced Water Recovery (EWR)1
can manage the reservoir pressure. Pressure
management can
(1) increase CO2 storage capacity,
(2) reduce the risks linked to reservoir pressure

such as seismic activity,
(3) manage the CO2 plume, and
(4) provide brine that can be treated with

desalination for beneficial use and provide a
source of water that was previously
considered unattainable.1,2

This water source could be used as the water
requirement for CCUS, thermoelectric power
operations, or some other societal need without
consuming currentwater supplies in a region.

Optimization	Model
(1) Simultaneously	optimize	CO2 storage	and	

water	production

(2) Cost-minimizing

i. CO2 injection	and	storage

ii. Brine	desalination	and	disposal
Spatial extent of the Madison formation within the Rock Springs
Uplift and location of the Jim Bridger’s Power Plant, a potential
anthropogenic source of CO2.6,7

High estimate of subsurface storage capacity for the Madison
formation within the Rock Springs Uplift measured in metric
tonnes.6,7

Spatial interpretation of the Madison formation’s salinity level in
total dissolved solids (TDS) measured in parts per million (ppm).6,7

Rock Springs Uplift5,7

• 50 by 35 square mile area

• Doubly-plunging anticline formation to trap injected CO2

• Over 10,000 feet of closed structural relief

• Madison formation is an average depth of 7,500 feet

• Madison formation is an average thickness of 250 feet

• Capped by 5,000 feet of thick, low-permeability Cretaceous
shale

• Capacity to store approximately 8 million tons of CO2

• Jim Bridger’s Power Plant is the nearest thermoelectric site
and anthropogenic CO2 source


