Water Rates as a Driver of Residential Water Demand

Tier 1 Cutoff

Scott Knight, James Heaney, and Miguel Morales Department of Environmental Engineering Sciences, University of Florida **ANALYSIS & RESULTS** MOTIVATION

To improve the understanding and management of the impact of water rates on residential irrigation demand

- ◆ Applies high quality parcel-level water demand data
- ◆ Accounts for irrigable area of each parcel
- Employs an improved estimate of the landscape net irrigation demand

DATA SETS & METHODS

Water Demand Data (2008-14)

- ◆ 510 single family residential customers in Gainesville, Florida
- that received reclaimed water through a separate meter
- ♦ 610 single family

residential potable water customers with dual meters in Gainesville, FL

Type	Year	Account Charge (\$/month)	Commodity Charge (\$/kgal)	Type	Account Charge (\$/month)	Commodity Charge (\$/kgal) Tier 1	Commodity Charge (\$/kgal) Tier 2	
	2008	\$10.00		Dual Potable	\$5.35	\$2.82	\$4.93	
	2009	\$6.00	\$0.60		\$7.00	\$3.11	\$5.50	
pər	2010	\$6.00	\$0.60		\$7.30	\$3.30	\$6.00	
ilain	2011	\$6.50	\$0.60		\$7.75	\$3.65	\$6.00	
Rec	2012	\$7.40	\$0.60		\$8.65	\$3.65	\$6.00	
	2013	\$7.40	\$0.63		\$8.70	\$3.75	\$6.00	
	2014	\$7.85	\$0.65		\$9.00	\$3.75	\$6.00	

Weather Data (2008-14)

- ◆ Florida Automated Weather Network daily data
- ♦ Daily soil water balance based on Dukes (2007)

- The irrigation application ratio (IAR) for free reclaimed water averaged 328%
- Offset credits (OC) were used to compare potable to reclaimed demand; reclaimed customers had an OC of 20%
- Reclaimed customers compared before and after a small commodity charge was added showed large decreases in use in the aggregate, but between 14 and 27% of customers increased use in each post-rate year
- Calculated the monthly net irrigation demand (NID) to determine the need for irrigation in each month
- Two annual efficiency metrics were applied: the irrigation demand satisfied (IDS) and effective irrigation application (EIA) using monthly demand data for each account

- By incorporating the potable dual meter customers, a model was developed to estimate the impact on demand as rates changed
- Estimated the normalized effect of a change in rates on the utility revenue generated

	400%
Ratio	300%
lication	200%
tion App	100%
Irrigat	0% \$(

	Percentage Change in Price									
	-50%	-30%	-20%	-10%	-5%	0%	5%	10%	20%	30%
Revenue	-30%	-16%	-11%	-5%	-3%	0%	2%	5%	10%	14%
Demand	41%	19%	12%	5%	3%	0%	-2%	-5%	-9%	-12%

Environmental Engineering Sciences

 $\overline{IAR}_{ann} = \frac{\overline{AR}_{ann}}{NID_{ann}} \times 100\%$ $OC = \frac{\overline{AR}_{potable}}{\overline{AR}} \times 100\%$

 $\frac{\sum_{1}^{12}(\min(NID_m, AR_m))}{\sum_{1}^{12}NID_m} \times 100\%$ $IDS_{v} =$ $EIA_{y} = \frac{\sum_{1}^{12} (\min(NID_{m}, AR_{m}))}{\sum_{1}^{12} AR_{m}} \times 100\%$

Post

Clustering was used to evaluate characteristics of groups of customers both for efficiency and for irrigable area

♦ Looked at the cumulative impact of the change from flat-rate to commodity charges

-12% ◆ Commodity Charge ■ Flat Rate $IAR = 1.6051P^{-0.495}$ $R^2 = 0.979$ \$5.00 \$2.50 0.00 Average Price (2008\$/kgal) 75% 100% 50% 23% 33% 42% -24% -29% -18%

CONCLUSIONS

Changes in residential demand for irrigation do not occur in a vacuum, but rather are influenced by weather, customer preferences, and water rates.

- Knowing irrigable area and irrigation demand provides a better metric for determining irrigation efficiency
- ◆ Reclaimed customers improved efficiency with a small commodity charge
- Customers with smaller irrigable areas over-irrigated to a greater extent
- ◆ 14-27% of reclaimed customers in each year increased their use despite the additional cost
- Changes in water demand are predictable at the aggregate level and can be estimated under increased rates
- Before developing a reclaimed system, utilities should determine the desired blend of water offsets and wastewater disposal
- When combined with water conservation efforts water rates can be an effective tool to manage demand

FUTURE WORK

- ♦ Increase the data sets to include a wider range of rates
- ♦ Evaluate demands elsewhere to improve the model
- Consider other price elasticity model formulations
- Estimate the potential for customers to convert to other water sources (private wells) as rates are increased

